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Abstract Understanding which catchment characteristics dominate hydrologic response and how to
take them into account remains a challenge in hydrological modeling, particularly in ungauged basins. This
is even more so in nontemperate and nonhumid catchments, where—due to the combination of seasonali-
ty and the occurrence of dry spells—threshold processes are more prominent in rainfall runoff behavior. An
example is the tropical savannah, the second largest climatic zone, characterized by pronounced dry and
wet seasons and high evaporative demand. In this study, we investigated the importance of landscape vari-
ability on the spatial variability of stream flow in tropical savannah basins. We applied a stepwise modeling
approach to 23 subcatchments of the Upper Ping River in Thailand, where gradually more information on
landscape was incorporated. The benchmark is represented by a classical lumped model (FLEXL), which
does not account for spatial variability. We then tested the effect of accounting for vegetation information
within the lumped model (FLEXLM), and subsequently two semidistributed models: one accounting for the
spatial variability of topography-based landscape features alone (FLEXT), and another accounting for both
topographic features and vegetation (FLEXTM). In cross validation, each model was calibrated on one catch-
ment, and then transferred with its fitted parameters to the remaining catchments. We found that when
transferring model parameters in space, the semidistributed models accounting for vegetation and topo-
graphic heterogeneity clearly outperformed the lumped model. This suggests that landscape controls a
considerable part of the hydrological function and explicit consideration of its heterogeneity can be highly
beneficial for prediction in ungauged basins in tropical savannah.

1. Introduction

Tropical savannah is the second most common climate type by land area [Peel et al., 2007]. Whereas in tem-
perate, humid, or tropical rain forest regions, as illustrated by a large body of literature [Parajka et al., 2013;
Farrick and Branfireun, 2014], the hydrology of tropical savannah regions is understood to lesser extent [Hra-
chowitz et al., 2011; Wohl et al., 2012]. Partly, this is the result of data scarcity, but also of special characteris-
tics of savannahs. Savannah regions are characterized by considerable intra-annual hydrological variability
with pronounced dry and wet seasons [Peel et al., 2007; Sriwongsitanon and Taesombat, 2011] as well as by
comparably elevated aridity indices (IA 5 EP/P) of 1< IA< 2, due to high evaporative demand. Being water-
limited, evaporative processes, and the temporal dynamics in the partitioning between evaporative fluxes
and runoff throughout, the year are generally more controlled by vegetation characteristics than in energy-
limited, temperate regions [Miyazawa et al., 2014]. This is highlighted by the typically large water storage
capacities that are accessible to roots, which buffer the seasonal variations in water availability, provide
plants with continuous access to water and generally increase the nonlinearity in storage-discharge relation-
ships [Montanari et al., 2006; Gao et al., 2014a]. Due to the large temporal variability of wetness states in the
different compartments of its hydrological system, runoff processes in savannah catchments are strongly
dominated by threshold processes; more so than in temperate and wet climates that experience less mois-
ture variability.

With some exceptions [e.g., Pitman, 1973; Petheram et al., 2012; Caballero et al., 2013], the vast majority of
hydrological models have been developed for use in temperate and humid regions, which frequently
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struggle to meaningfully accommodate the strong threshold behavior [e.g., Perrin et al., 2007]. In spite of
efforts toward improved model regionalization techniques [e.g., Hughes, 2006; Kapangaziwiri et al., 2012],
model performance in arid regions is generally worse than in other regions [Parajka et al., 2013].

Spatial transferability of model structures and parameters (hereafter referred to as model transferability) is
an important validation test for hydrological models. The ability to regionalize or transfer models was an
important objective and challenge of the IAHS decade on Predictions in Ungauged Basins (PUB) [Sivapalan
et al., 2003; Bl€oschl et al., 2013; Hrachowitz et al., 2013] as it is tightly linked to the issues of model scaling
[Sivapalan and Kalma, 1995; Bl€oschl, 2001] and consistency [Martinez and Gupta, 2011; Euser et al., 2013,
2015; Hrachowitz et al., 2014; Fovet et al., 2015].

For model applications, it is in general common that parameters have to be recalibrated or models even
have to be redesigned to describe hydrological processes in different catchments even if they are spatially
close to each other. This practice is symptomatic of a limited understanding of how catchment characteris-
tics relate to model parameters and structure. Moreover, it is not applicable in ungauged basins, where
time series for model calibration are not available.

In order to provide confidence of a generalizable understanding of hydrological processes, and of the ability
to predict beyond the range of observed data, various model performance tests have been proposed [e.g.,
Andr�eassian et al., 2009]. Most often, models are evaluated with respect to temporal transferability, using
split-sample or differential split-sample tests [Donnelly-Makowecki and Moore 1999; Hartmann and B�ardossy,
2005; Refsgaard et al., 2014]. Such tests, however, do not guarantee that a model is transferable to other
regions. A more stringent test is spatial model transferability between proxy catchments with similar hydro-
logical function [Kleme�s, 1986]. This test increases the confidence that the hydrological processes at play are
correctly represented, and that the model can be used outside the range of calibration [e.g., Bl€oschl et al.,
2013; Gupta et al., 2014, Fenicia et al., 2016].

To achieve model spatial transferability, one among a wide range of strategies is to assume that catchments
with similar climatic (e.g., rainfall, potential evaporation) and physical properties (e.g., landscape, vegetation,
soils, geology, area, etc.) have similar response behavior, and to classify entire catchments based on these
characteristics [B�ardossy, 2007]. The main limitation of this approach is that, given the high variability of cli-
matic and physical properties between catchments, it is difficult to identify groups of catchments with simi-
lar characteristics [Andr�eassian et al., 2009]. Given the scarcity of data in many regions of the world this, in
turn, puts serious constraints on the application of classification schemes based on this approach.

Another common approach for model transferability is parameter regionalization [e.g., Hundecha and
B�ardossy, 2004; McIntyre et al., 2005; Parajka et al., 2005; Laaha and Bl€oschl, 2006; B�ardossy, 2007; Bl€oschl
et al., 2013; Viglione et al., 2013]. For example, Merz and Bl€oschl [2004] looked for spatially regionalized pat-
terns of parameters in the HBV model for over 300 catchments in Austria. When applied using lumped mod-
els at the scale of entire catchments, this approach did not result into clear relationships between model
parameters and catchment properties [e.g., Merz and Bl€oschl, 2004].

In order to improve the link between model parameters at the large-scale and observable characteristics at
the small-scale, Samaniego et al. [2010] proposed a multiscale parameterization regionalization (MPR) meth-
od, where model parameters are linked to land surface characteristics at the finest spatial resolution avail-
able by transfer functions, and then upscaled to the model grid size. This approach was successfully applied
in many regions [e.g., Kumar et al., 2013].

An alternative approach for model transferability is based on the concept of hydrological response units
(HRUs). This approach, instead of defining hydrological similarity at the scale of entire catchments, considers
smaller areas within a catchment which are considered hydrologically similar [Fl€ugel, 1996]. Previous studies
applied this concept to develop models such as the Soil and Water Assessment Tool (SWAT), where HRUs
are mainly based on soil type and landuse [Arnold et al., 1995], or Dynamic TOPMODEL [Beven and Freer,
2001], which is mainly based on topographic information.

The lack of suitable data for detailed HRU definition, together with equifinality problems due to increased
model complexity, frequently hinders the application of such modeling strategies in practice. It is therefore
critical to systematically analyze the individual and combined effects of different landscape characteristics
such as of topography, topology, soils, vegetation, and geology, to develop an understanding on how
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much and which information is necessary to meaningfully define HRUs and which of these factors are first-
order controls on model transferability.

The coevolution of topography, vegetation, soil texture, climate, and geology, suggests that these land-
scape factors are correlated [Sivapalan and Bl€oschl, 2015]. We may therefore not need to consider all these
aspects in our models [Savenije, 2010; Troch et al., 2013], as information of one of these aspects could in
principle be derived from the others. While this is in detail problematic for individual processes such as soil
formation, that act on very long-time scales and that may never reach equilibrium, there is growing evi-
dence that vegetation and its influence on the hydrological system can adjust relatively quickly, i.e., at time
scales of a few years, to changes and disturbances [e.g., Troch et al., 2009]. It is hypothesized that this infor-
mation can be used, at the time scale of interest for many hydrological applications (i.e., from subdaily up
to decadal) to distinguish between functionally different landscape classes characterized by different domi-
nant hydrological processes to increase the representation of hydrological process heterogeneity in a semi-
distributed yet parsimonious way. This allows us to keep models as simple as possible, data requirements,
and parameters equifinality low. Based on this assumption, Savenije [2010] proposed a topography-driven
modelling approach (FLEX-Topo), in which only topography and land cover (vegetation) characteristics are
considered as landscape features for deriving HRUs.

Gharari et al. [2014] found that, if adequately constrained by expert knowledge, the relatively complex
FLEX-Topo can be quite robust compared to a standard lumped model even without calibration. Similarly, a
recent study by Hrachowitz et al. [2014] highlighted the value of increased process complexity introduced
by HRUs to adequately reproduce a wide range of hydrological signatures and thus the system integrated
response characteristics of a catchment. Gao et al. [2014a] showed for mountainous catchments in cold,
arid regions that FLEX-Topo, which explicitly accounts for topography and land cover information, can per-
form substantially better than lumped models without this information.

Hillslopes and riparian zones have different runoff generation mechanisms, which are revealed by field hydro-
metric, soil moisture, isotopic, and solute measurements [McGlynn and McDonnell, 2003; Detty and McGuire,
2010]. Vegetation dynamics in space and time influence interception, infiltration, transpiration, percolation,
and even groundwater dynamic [Rodriguez-Iturbe, 2000; Cleverly et al., 2006; Yu, et al., 2010]. Following the evi-
dence that topography and vegetation are, besides other factors, such as geology [e.g., Fenicia et al., 2014,
2016], first-order controls on the hydrological behavior of catchments, the objective of this study is to evaluate
the importance of topographic and vegetation-induced heterogeneity for the hydrological function of catch-
ments and to test to which degree the explicit utilization of readily available topographic and vegetation
information can improve model transferability in a region characterized by a tropical savannah climate.

2. Study Site and Data

2.1. Study Site Introduction
The Ping River is one of the main tributaries of the Chao Phraya, which drains more than one-third of Thai-
land and is the country’s largest river basin [Sriwongsitanon and Taesombat, 2011; Visessri, 2014; Visessri and
McIntyre, 2015]. The study sites are 23 catchments of the Upper Ping River basin (UPRB; Figure 1), with areas
ranging from 128 to 14814 km2 and complex nested relations (Figure 1b). Most of these catchments are
dominated by forest (80% in 2005, Figure 1h) [Sriwongsitanon and Taesombat, 2011; Visessri, 2014; Visessri
and McIntyre, 2015], and the landscape is characterized by steep hillslopes intersected by wetlands. The
average annual rainfall between 1988 and 2005 was around 1200 mm/a, and runoff was around 270 mm/a
[Taesombat and Sriwongsitanon, 2009]. The climate of this region is tropical savannah (Aw in K€oppen–Geiger
climate classification), characterized by South Asian Monsoon, with hot wet summers and hot dry winters.
Red-yellow podzolic soils, is the dominant soil type (Figure 1i), which overlays a complex geology, dominat-
ed by quartzite, phyllite, schist, sandstone, shale, tuff, and alluvial deposits.

Figure 1g shows a landscape classification in the three classes wetland, terrace, and hillslope (the classifica-
tion approach is detailed in section 3.3.1). Of the 23 study catchments, in particular the catchments P.5,
P.73, P.76, and P.85 are relatively flat and have higher proportions of wetland and terrace landscapes than
other catchments (Figures 1c, 1d, and 1g). The dominant vegetation of these catchments is deciduous for-
est, shrubs, and agriculture, with the lowest long-term catchment average dry season NDVI of the study
catchments (Table 1 and Figure 1e). The remaining catchments are characterized by steep hillslopes, denser
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vegetation, and higher dry season NDVI. A detailed summary of catchment characteristics is given in Figure
1 and Table 1 where the marked differences in landscape characteristics between the study catchments can
be clearly seen. For example, consider the lowland catchments P.5 and P.73. More than 40% of their areas
are covered by wetlands (pW) and only 13 and 35% of the respective catchment areas are classified as hill-
slopes (pH). In contrast, P.14 and P.79 are more upland type of areas with wetland proportions pW< 5% and
hillslope proportions pH> 80%. In addition, considerable vegetation variability between the study catch-
ments is indicated by the catchment average NDVI values that range between �0.55 (P.5) and 0.80 (P.79).

2.2. Data Set
Daily rainfall, runoff, and temperature data were available from the Thailand Meteorological Department and
Royal Irrigation Department. The daily areal rainfall distribution across the UPRB was generated using 68 sta-
tions in and around the UPRB by thin plate spline extrapolation [Taesombat and Sriwongsitanon, 2009]. The dai-
ly potential evaporation (Table 1) was calculated using the Hargreaves equation [Hargreaves, 1975], with daily
maximum and minimum temperature as forcing data from three close-by stations: Chiangmai (18847’N,
98859’E), Lamphun (18834’N, 99802’E), Maejo (18855’N, 99800’E). Note, that a range of studies suggests that at the
catchment scale simple temperature and radiation-based evaporation models, such as the Hargreaves model,
can be considered sufficiently accurate [e.g., Oudin et al., 2005; Kleidon et al., 2014]. This is because both typically
exhibit strong correlations with other components of the energy balance and thus serve as an adequate inte-
grated indicator for the catchment-scale energy budget [Ambach, 1988; Allen et al., 1998; Hock, 2003].

The Digital Elevation Model (DEM) used in this study was the Shuttle Radar Topography Mission (SRTM) prod-
uct with a spatial resolution of 90 m. Values of the Normalized Difference Vegetation Index (NDVI) were
obtained from the MOD13Q1 product with 250 m spatial and 16 days temporal resolution. Both the DEM and
NDVI (2000-2011) data were downloaded from https://lpdaac.usgs.gov/data_access/usgs_earthexplorer.

Since there is only a limited number of meteorological stations available and due to the marked elevation
difference within the UPRB, temperatures for the estimation of the potential evaporation were elevation
adjusted using the environmental lapse rate of 0.006oCm21.

Figure 1. (a) Location of the Upper Ping River basin (UPRB) in Thailand; (b) 23 study catchments and the location of their runoff gauging stations; (c) DEM of the UPRB; (d) slope map of
the UPRB; (e) dry seasonal NDVI (Normalized Difference Vegetation Index) map of the UPRB; (f) HAND (Height Above the Nearest Drainage) map of the UPRB; (g) landscapes classification
map of the UPRB based on HAND and slope; (h) land use map of the UPRB; and (i) the soil types of the UPRB.
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Based on the approach proposed by Visessri and McIntyre [2015], we calculated the data quality scores of
the 23 study catchments (Table 1), depending on the length of the flow record (years), the flow records
overlapping with rainfall record (years), the number of possible outliers in the flow records, the frequency of
revision of rating curve, missing rainfall data from rain gauges located within the subcatchment, the size of
catchments, and the elevations of catchments. The maximum possible score of 46 according to Visessri and
McIntyre [2015] indicates the best possible data quality score given the available data.

3. Methodology and Model Setups

To assess the importance of a more complete representation of the topography and vegetation-induced
process heterogeneity for the spatial transferability of models, four model setups with increasing complexi-
ty were tested in this study. The models are a combination of interconnected reservoirs and transfer func-
tions, as conceptualized in the SUPERFLEX modeling framework [Fenicia et al., 2011]. These four models are
detailed below.

To evaluate the models’ potential for spatial transferability and to assess the relative importance of account-
ing for topography and/or vegetation-induced process heterogeneity for improving model transferability, a
‘‘leave-p-out-cross-validation strategy’’ was chosen [Shao, 1993]: from the study catchments, one was cho-
sen in turn as donor catchment to calibrate the four models, which were then transferred and tested in the
other receiver catchments. This procedure was repeated so that each catchment served as donor catchment
once. In the end, a rank sum test was conducted to investigate whether FLEXLM, FLEXT, and FLEXTM signifi-
cantly improved transferability compared with FLEXL.

3.1. FLEXL

FLEXL is a lumped conceptual hydrological model (Figure 2), which consists of four reservoirs: the intercep-
tion reservoir Si (mm), the unsaturated reservoir Su (mm), the fast response reservoir Sf (mm), the slow
response reservoir Ss (mm), and two lag functions representing the lag time from storm to peak flow (TlagF),
and the lag time of recharge from the root zone to the groundwater (TlagS). In total, there are 11 free calibra-
tion parameters, including SuMax, in FLEXL. The relevant model equations are given in supporting informa-
tion Table S1 and the prior parameter distributions in Table 2.

Table 1. Summary of Catchment Characteristicsa

Code Name
Area
(km2)

Average
Elevation (m)

Calibration
Period

Validation
Period

Data Quality
Score

pW

(%)
pT

(%)
pH

(%)
Runoff

Coefficient
P

(mm/a)
Ep

(mm/a) NDVI

P.1 Nawarat Bridge 6307 799 1999–2005 2006–2012 32 12.5 17.5 70 0.174 1247 1561 0.716
P.4A Ban Mae Taeng 1902 1026 1985–1995 1996–2005 39 5.6 11.5 83.0 0.153 1274 1547 0.773
P.5 Sing Phithak Bridge 151 540 2005–2008 2009–2012 30 40.7 24.3 35.0 0.292 914 1672 0.547
P.14 Ban Kaeng Ob Luang 3853 990 1985–1995 1996–2005 41 4.2 12.2 83.6 0.271 1253 1556 0.733
P.20 Chiang Dao 1355 777 1985–1995 1996–2005 42 9.7 17.4 72.9 0.226 1223 1606 0.732
P.21 Ban Rim Tai 515 724 1985–1995 1996–2005 41 10.5 23.0 66.5 0.195 1273 1619 0.759
P.24 Ban Sop Tia 452 937 1985-1995 1996-2005 39 6.5 15.9 77.6 0.358 978 1568 0.748
P.42 Ban Mae Bon Mai 315 669 1985–1993 1994–2001 41 12.15 27.3 60.6 0.143 950 1644 0.682
P.56 Ban SahaKhon Rom Klao 529 448 1999–2005 2006–2011 29 15.5 17.8 66.8 0.263 1282 1698 0.707
P.64 Ban Luang 495 979 1999–2005 2006–2011 29 7.3 26.0 66.7 0.432 1124 1559 0.693
P.65 Ban Muang Pog 240 1121 1993–1997 1998–2001 28 5.8 11.4 82.9 0.354 1284 1525 0.729
P.67 Ban Mae Tae 5236 1057 1999–2005 2006–2011 29 10.1 16.4 73.5 0.180 1580 1533 0.721
P.71 Ban Klang 1798 837 1996–2000 2001–2005 36 10.1 15.5 74.4 0.156 997 1582 0.744
P.73 Ban Sop Soi 14814 767 1999–2005 2006–2012 31 41.3 45.7 13.0 0.208 1181 1610 0.678
P.75 Ban Cho Lae 3090 1097 1999–2005 2006–2011 31 11.6 17.6 70.8 0.177 1345 1528 0.716
P.76 Ban Mae E-Hai 1541 582 2000–2002 2003–2005 29 16.0 41.6 42.4 0.132 980 1655 0.671
P.77 Ban Sop Mae Sapuad 550 637 1999–2002 2003–2005 32 9.9 19.6 70.6 0.137 1110 1648 0.732
P.79 Ban Mae Wan 134 820 2001–2005 2006–2011 30 2.6 7.0 90.4 0.464 1300 1598 0.802
P.80 Ban Pong Din 128 1146 2001–2005 2006–2011 31 7.3 20.1 72.6 0.329 1212 1493 0.765
P.81 Ban Pong 1134 456 2002–2006 2007–2011 29 14.9 17.4 67.7 0.218 1136 1690 0.711
P.82 Ban Mae Win 388 930 2003–2007 2008–2011 28 5.6 14.2 80.2 0.411 1205 1551 0.756
P.84 Ban Mae Chaem 482 630 2003–2007 2008–2011 28 7.2 16.6 76.2 0.202 1197 1649 0.736
P.85 Ban Lai Khaeo 1996 308 2003–2007 2008–2011 29 14.8 35.4 49.8 0.105 1132 1703 0.607

aThe higher the data quality score, the better the data quality (46 represents the best possible data quality in this study). pW, pT, and pH represent areal proportions of wetlands, ter-
races and hillslopes, respectively. Runoff coefficients were computed as the long-term runoff coefficients for the observation period. P and Ep represent mean annual precipitation
and mean annual potential evaporation. NDVI was calculated as the long-term average NDVI in dry seasons.
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3.2. FLEXLM

FLEXLM has the same structure as
FLEXL, (it is therefore also lumped) and
differs from it in the number of calibra-
tion parameters. In FLEXLM SuMax is not
estimated by calibration, but it is
directly determined from observed cli-
mate and vegetation data using the
Mass Curve Technique (MCT) [Gao
et al., 2014b]. It therefore has 10 free
calibration parameters.
3.2.1. The MCT Technique
The rationale behind the MCT tech-
nique is that the size of the root zone
reservoir (i.e., SuMax) is ‘‘designed’’ by
the ecosystem so that it allows for suf-
ficient water storage to overcome dry
spells with a certain return period. In
analogy to engineers designing drink-
ing water reservoirs, the MCT allows to
estimate the required root zone stor-
age capacity SuMax of a system based
on cumulative input and cumulative

demand. The highest deficit between input and demand over a specified time period will then be an esti-
mate of the required storage capacity. The system input is the effective precipitation (the difference
between precipitation and interception evaporation), i.e., PE 5 P 2 EI, where P is precipitation, assuming an
average interception rate of EI 5 2 mm d21 during rainy days. The long-term average system water demand,
i.e., transpiration, has been estimated as ETa 5 PE-Q, where Q is the observed runoff from the system. These
estimates were subsequently translated into long-term average dry season transpiration ETd based on the
long-term catchment-average NDVI ratio between wet and dry seasons. The storage requirement was then
estimated as the maximum deficit between cumulative PE and cumulative ETd over dry periods. These val-
ues were ranked so as to obtain storage requirements for droughts with different return periods. In line
with Gao et al. [2014b], the root zone storage capacity SuMax was selected based on a drought of once in 20
years. For further details of the MCT approach, the reader is referred to Gao et al. [2014b].

3.3. FLEXT

The model structure of FLEXT is shown in Figure 3 and consists of three parallel model components, which
represent functionally distinct landscape units, classified according to their topographic characteristics. The
main difference between these components is the architecture and parameterization of the unsaturated
root zone reservoirs Su, which is distributed in FLEXT (Figure 3 and supporting information Table S2). There
are 13 free calibration parameters in FLEXT. All equations are listed in supporting information Table S2, and
prior parameter distributions are shown in Table 2.

Figure 2. Model structure of FLEXL.

Table 2. Uniform Prior Parameter Distributions of the FLEXL and FLEXT

FLEXL FLEXT

Parameter Range Parameters Range Parameter Range Parameters Range

SiMax (mm) (0.1, 6) Kff (d) (1, 9) SiMax (mm) (0.1, 6) D (0, 1)
SuMax (mm) (10, 1000) TlagF (d) (0, 5) SuMaxH (mm) (10, 1100) KfH (d) (1, 20)
b (-) (0, 3) TlagS (d) (0, 100) b (-) (0, 2) TlagF (d) (0, 5)
Ce (-) (0.1, 1) Kf (d) (1, 40) Ce (-) (0.1, 1) TlagS (d) (1, 90)
D (-) (0, 1) Ks (d) (10, 500) PMax (mm/d) (0, 3) Kf (d) (1, 40)
SfMax (mm) (10, 500) SuMaxT (mm) (10, 1000) Ks (d) (10, 400)

SuMaxW (mm) (10, 1000)
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3.3.1. Landscape Classification
Based on the recently formalized metric Height Above the Nearest Drainage (HAND) [Renn�o et al., 2008],
topographic data were used to subdivide the study catchments into landscape classes with different hydro-
logical function [Savenije, 2010; Nobre et al., 2011]. These classes were then associated with individual mod-
els characterized by different architectures and different parameter values, operating in parallel and linked
by a groundwater reservoir. The combined inflow generated from the individual landscape classes into the
common groundwater reservoir was then computed as the area-weighted average of the outflows from the
individual landscape classes. This strategy was found to be valuable for providing more robust representa-
tions of the observed system dynamics in a range of previous studies in contrasting environments [Gao
et al., 2014a; Gharari et al., 2014; Hrachowitz et al., 2014]. From preliminary on-site terrain analysis, three
dominant landscape classes or hydrological response units could be identified for the study catchments:
wetlands, terraces, and hillslopes. Following the suggestions of Renn�o et al. [2008] and Gharari et al. [2011],
the combined use of HAND and local slope allowed the definition of the three HRUs. Locations with
HAND< 5m were treated as wetlands, locations with HAND> 5 m, and slope< 0.1 were classified as terra-
ces and locations with HAND> 5m and slope> 0.1 were regarded as hillslopes. The threshold values were
selected based on local expert knowledge and experience in other catchments [Renn�o et al., 2008; Gharari
et al., 2011]. The different landscapes proportions of the 23 catchments are shown in Figure 1g and Table 1.
3.3.2. Model Structure Rationale
To fulfil the contrasting functions of water retention and drainage, forested hillslopes are often character-
ized by larger root zone storage capacities (SuMaxH) than wetlands or grass hillslopes, due to the need for for-
ests to buffers for dry periods [cf., Savenije, 2010]. To provide drainage for hillslope vegetation, water in
excess of the storage capacity is split into one part that is routed through a fast reservoir to the channel by
subsurface storm flow (RfH) and another part that recharges the groundwater reservoir (RsH).

In contrast to the importance of lateral drainage of water on hillslopes, the main direction of water move-
ment on terraces can be expected to be more vertical, due to its flatter topography. Thus, most infiltrating
water in terraces is either stored or recharges (PercT) the groundwater reservoir. Depending on soil and bed-
rock characteristics, generation of lateral flow from terraces (RfT) is likely to require larger storm events or
more extended wet periods than generation from hillslopes.

On wetlands, the root zone storage capacity (SuMaxW) is relatively low due to the shallow groundwater table.
As a consequence, wetlands are characterized by higher runoff coefficients than hillslopes, as excess water
will be directly and rapidly routed to the stream as soon as the relatively small storage capacity is exceeded,
which is in strong agreement with findings from many experimental studies [e.g., Freer et al., 2004; Detty
and McGuire, 2010]. In contrast to the other landscape units, wetlands are frequently close to saturation,

Figure 3. Model structure of FLEXT.
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and transpiration is therefore rather energy than water limited. The main functions of wetlands are thus lat-
eral drainage and transpiration.

The three landscape units described are connected by a common groundwater reservoir, recharged by hill-
slopes (RslH) and terraces (PercT), and with an upward flux which sustains the evaporative demand of the wet-
land vegetation.

Transpiration rates are estimated through different methods. On hillslopes and terraces, actual transpiration
was computed based on soil moisture and potential evaporation, as in the lumped model FLEXL. On wet-
lands, due to the sufficient water supply, actual transpiration is assumed to occur at potential rates after
canopy interception [Mohamed et al., 2012].

3.4. FLEXTM

To test the integrated influence of topographic and vegetation information on model performance and
model transferability, we linked some parameters of FLEXT to vegetation information. FLEXTM is the model
that incorporates these linkages. The number of calibration parameters reduces from 13 (FLEXT) to 11
(FLEXTM).

In order to account to some degree for differential transpiration dynamics, and thus potentially distinct root
zone storage capacities, the catchment integrated estimates of SuMax were adjusted for the individual land-
scape classes (e.g., wetlands, terraces, and hillslopes) in FLEXTM. There is evidence that suggests a functional
relationship between NDVI and transpiration rates [e.g., Boegh et al., 1999]. Postulating a direct, and in the
absence of any further information, linear dependence between transpiration rates and SuMax (i.e., plant
available water) in water limited environments and under stable climatic conditions, which is plausible giv-
en the results of recent studies [e.g., Gentine et al., 2012; Gao et al., 2014b], then allowed the respective root
zone storage capacities on hillslopes (SuMaxH) and on terraces (SuMaxT) to be estimated from estimates of
catchment integrated SuMax as obtained from the MCT (see FLEXLM) and the long-term average dry season
NDVI in the two different landscapes (INDVI,H on hillslopes and INDVI,T on terraces). In contrast, the shallow
groundwater levels in wetlands imply very low storage capacities SuMaxW, which are a consequence of the
energy rather than water limitation in that landscape unit and which are unlikely to be reflected by NDVI.
Thus, under the assumption of SuMax,W being lower than the storage capacities in hillslopes and terraces, it
was estimated as a free calibration parameter between the limits 0< SuMaxW<min(SuMaxH, SuMaxT) so that
the following holds:

SuMax5c pHSuMaxH1pT SuMaxTð Þ1pW SumaxW (1)

with

SuMaxH5SuMax
INDVI;H

INDVI
(2)

SuMaxT 5SuMax
INDVI;T

INDVI
(3)

where pH, pT, and pW are the areal proportions of hillslope, terrace, and wetland classes, respectively, in the
individual catchments and c is a rescaling factor to maintain the catchment integrated SuMax and, which, as
all other terms are known, varies with SuMaxW.

4. Model Evaluation

4.1. Objective Functions
In order to select parameter sets that reproduce modeled simulations in high agreement with different
aspects of the hydrological response, frequently not catered for by calibration to single objective functions,
a multiobjective calibration strategy [Gupta et al., 1998] was applied in this study. The two objective func-
tions used are Kling-Gupta efficiencies of flows (IKGE), and of the logarithm of flows (IKGL). These objective
functions were chosen as they emphasize different parts of the hydrograph. While IKGE can help to identify
parameter sets that can best reproduce high flow dynamics, IKGL identifies those that can better reproduce
the hydrograph during low flows. The use of these two objective functions therefore helps to identify
parameter sets that enforce a balanced system response which is more likely to be hydrologically consistent
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than parameter sets selected based on only one single objective function [Gupta et al., 1998]. The Pareto-
optimal parameters sets were obtained with the MOSCEM-UA algorithm [Vrugt et al., 2003] with the number
of complexes reflecting the number of parameters n and the number of initial samples set to 10n2 and a
total number of 50,000 model iterations for all the models structures.

4.2. Experimental Design of Transferability Test
Model performance of the four tested models (FLEXL, FLEXLM, FLEXT, FLEXTM) in the 23 study catchments for
calibration, validation, and transferability was assessed by the two objective functions (IKGE, IKGL). The
detailed procedure of the experiment is listed as follows:

1. Calibrate one model based on one catchment with half the time series of the rainfall-runoff data. The
Pareto-optimal parameter sets are retained.

2. Use the calibrated Pareto-optimal parameter sets to perform a temporal split-sample to assess the model
performance during the validation period.

3. Identify catchments with poor data quality and exclude them from the subsequent transferability tests.
Catchments with poor data quality were excluded because it is illogical to transfer the model parameters
that failed to reproduce the hydrological processes of a donor catchment to a receiver catchment. Poor
data quality was assessed based on the quality index proposed by Visessri and McIntyre [2015] and by the
models’ performance in temporal-validation. In particular, catchments with a quality index lower than 29
and with IKGE and IKGL lower than 0.5 in temporal-validation were excluded from the analysis.

4. Use all retained catchments in turn as donor catchments and transfer both, model and Pareto-optimal
parameter sets of each individual model, to the remaining (receiver) catchments and model the respec-
tive flows without further calibration; note that for FLEXT and FLEXTM, the local landscape proportions
and for FLEXLM and FLEXTM the local climate-derived SuMax estimates of the respective receiver catch-
ments are used rather than the values from the donor catchment.

5. Follow the same procedure for all four model setups.
6. Analyze model transferability in different landscapes by evaluating the performance of the four model

set-ups with respect to the calibration objective functions. Compared with FLEXL model, ‘‘substantial
improvement’’ is defined as the objective function increased over 0.5; the increase of (0.1–0.5) means
‘‘moderate improvement’’; reversely,<20.5 indicates ‘‘substantial deterioration,’’ and (20.5 to 20.1)
means ‘‘moderate deterioration.’’ In addition, the transferred models are evaluated according to their
ability to reproduce flow duration curves, individual hydrograph components, and the water balance of
different landscapes in a way that is consistent with our understanding of the system functioning.

5. Results

5.1. Calibration Validation and Catchment Selection
Figure 4 illustrates the performance of the four tested models with respect to their objective functions,
both, in calibration and validation periods for the sets of Pareto-optimal solutions. The corresponding
parameter values in the 23 study catchments are shown in supporting information Figures S1 and S2. For
most models and catchments, the mean model performance in the calibration period well exceeds IKGE and
IKGL 5 0.5. This indicates that all four models exhibit comparable skill to fit the observed hydrograph during
the calibration period and that a well-justified choice of the most suitable, i.e., hydrologically consistent,
model among the tested ones is not warranted by this information alone. In contrast, the performances in
the validation period are significantly lower for a range of catchments (e.g., P.56, P.64, P.65, P.73, P.76, P.79,
P.82, P.84, and P.85), which mainly coincide with those with lower data quality scores (Table 1). It can be
argued that the lower performances in the validation period point, besides to data quality issues, toward
model structural deficiencies or unsuitable parameters. However, due to the overall similarity of the per-
formances of the four models, even in the validation period, little can be inferred on the importance of
topographic heterogeneity and vegetation from this temporal split-sample test.

Applying the approach mentioned in point (3) of section 4.2, we found that 14 out of 23 catchments (Table
1 and Figure 4), which are in general those with the highest data quality scores, are suitable for use in the
following model transferability test. The elevated proportion of catchments that exhibited poor data quality
strongly underlines the challenges of acquiring reliable observations in many tropical environments.
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5.2. Model Transfer
5.2.1. Transferability of FLEXL

In the transferability tests (Figure 5), i.e., when transferring a calibrated model from the calibration (donor)
catchment to receiver catchments without further calibration, the model performance of FLEXL during the
calibration period deteriorated dramatically in most cases: the mean IKGE across all catchments and Pareto-
optimal solutions dropped from 0.74 to 0.18 whereas the mean IKGL decreased from 0.75 to 0.19. Supporting
information Table S3 shows the results with respect to two objective functions of all individual transfers
tested in this study. It clearly shows the difficulty to transfer calibrated lumped model to adjacent catch-
ments. Interestingly, it can be seen that FLEXL has a reasonable transferability potential when transferring
from P.20 or P.21 to other catchments. This indicates that these two catchments have a hydrological func-
tion that comes closest to that of the remaining catchments and that the selection of donor catchments is
essential if the model does not account for a sufficiently high level of process heterogeneity.

Figure 4. Calibration (blue) and time-validation (red) results of the four tested models in the 23 study catchments. The symbols indicate the mean (a) IKGE and (b) IKGL of all Pareto-
optimal solutions. Grey boxes indicate the catchments excluded for the spatial transferability test due to insufficient performance with respect to at least on objective function, i.e., IKGE

or IKGL< 0.5. Note that based on this test, no model clearly outperforms the others.

Figure 5. Overall model transferability results of the four models for all 14 study catchments used in the transferability test, as indicated
by the distributions of IKGE and IKGL of all Pareto-optimal solutions. The red lines in boxes indicate median values, and blue stars indicate
average values.
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5.2.2. Transferability of FLEXLM

The values of SuMax for the 14 study catchments, independently obtained from observed hydroclimatological
data by the MCT, are between 189mm (P.5) and 697mm (P.1). Figure 5 summarizes the mean performances
across all Pareto-optimal solutions applied in all receiver catchments. Using the SuMax values of the individual
catchments in FLEXLM, thus accounting for intercatchment differences in vegetation when treating them as
receiver catchments and without any further calibration of the remaining parameters transferred from the
donor catchments, increased the mean IKGE from 0.18 to 0.44 and thus also improved model transferability
compared to FLEXL. A rank sum test supports these observations, indicating that the distributions of model
performances of FLEXL and FLEXLM in the receiver catchments are significantly different (p< 0.001). Figure 6
provides a detailed illustration of the performance changes of FLEXLM in the individual receiver catchment
with respect to FLEXL. It can be seen that 16% and 32% of the transfer cases, respectively, experience a sub-
stantial or moderate improvement, while in only 10% of the cases a (moderate) deterioration was observed.
The improvement of the mean IKGL compared to FLEXL was on average 0.08, with less significance (p 5 0.061).
However, in 6% and 23% of the cases substantial or moderate improvement, respectively, was observed, with
only moderate deterioration in 10% of the cases. The results suggest that when using donor catchments with
comparatively low NDVI compared to the receiver catchments (e.g., P.5, P.80) the effects of accounting for dif-
ferences in vegetation by adjusting SuMax are beneficial. In contrast, donor catchment with NDVI values closer
to the average of the receiver catchments (e.g., P.20, P.21, and P.81) exhibit less performance improvements.
5.2.3. Transferability of FLEXT

The explicit consideration of several landscape units with distinct hydrological function in the semidistrib-
uted FLEXT setup led, when transferred to receiver catchments, to an average improvement of the mean
IKGE from 0.18 to 0.36 compared to FLEXL (Figure 5), with the distribution of solutions being significantly dif-
ferent (p 5 0.021) according to a rank sum test, with substantial and moderate improvement in 13% and
24% of the transfer cases, respectively, and moderate deterioration in only 11% of the cases (Figure 6). The
average improvement of IKGL is from 0.19 (FLEXL) to 0.41 (FLEXT), with 21% and 17% of the cases exhibiting
substantial or moderate improvement, respectively, and 17% moderate deterioration. No clear pattern
could however be distinguished which types of catchments benefit most from explicitly accounting for
topographic heterogeneity. It was however observed that the transfer from one of the donor catchments
that results in the strongest performance improvements in the receiver catchments is characterized by rath-
er strong landscape heterogeneity, i.e., no clear dominance of one class (P.5). In contrast, donor catchments
characterized by more homogeneous landscapes, i.e., the dominance of one specific landscape class, exhibit
the lowest overall performance improvements when accounting for landscape heterogeneity (e.g., P.4A,
P.14, P.20, and P.75). This is an indication that the incorporation of landscape information is in particular
beneficial for model transfer cases in which donor catchments are characterized by significant landscape
heterogeneity while the receiver catchments are rather homogenous. In contrast, when receiver catchments
are characterized by more landscape heterogeneity than a donor catchment, the results suggest that such
donor catchments carry insufficient information on the composition of runoff processes that can be
extracted by calibration to act as donor catchment [e.g., Wooldridge et al., 2002; Nijzink et al., 2016].
5.2.4. Transferability of FLEXTM

The combined utilization of vegetation and topographic information in FLEXTM resulted in considerable
improvements of model transferability with respect to both objective functions, in general outperforming the
other models (Figure 5). On average an improvement of mean IKGE for the receiver catchments to 0.46 com-
pared to FLEXL (IKGE 5 0.18) can be observed. Similarly, an improvement from 0.19 (FLEXL) to 0.42 was found for
mean IKGL. For both objective functions, the improvements are statistically significant as suggested by a rank
sum test (p< 0.001 and p< 0.001). While the results indicate moderate to substantial performance improve-
ments of mean IKGE for 32% and 20% of the transfer cases, respectively, moderate or substantial improvements
of mean IKGL were observed in 26% and 24% of the transfers (Figure 6). In contrast, only 5% and 18% of the
cases, respectively, indicate a moderate performance deterioration. On balance, it can be said that FLEXTM pro-
vides the overall strongest improvements for model transferability in the study region. Its improvements for
reproducing the high flow responses (i.e., IKGE) in the receiver catchments are more pronounced than those for
the low flows (i.e., IKGL). Accounting for intercatchment vegetation differences (FLEXLM), and thus differences of
how catchments partition, store and release water, is somewhat more important for the improvement of high
flows in receiver catchments than accounting for intracatchment landscape heterogeneity (FLEXT). The latter,
however, was in this study found to be slightly more relevant for improving the representation of low flows in
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Figure 6. The improvement of three hydrological models (FLEXLM, FLEXT, and FLEXTM) compared with FLEXL for the two calibration objective functions (IKGE, IKGL) after model transfer
from donor to receiver catchments in 14 catchments. The values of objective functions are based on the mean value of each objective function from the set of Pareto-optimal solutions.
Shades of green indicate slight (light green) to strong (darker green) improvement in terms of mean IKGE and IKGL, respectively; shades of red indicate slight (orange) to strong (red) dete-
rioration, while yellow indicates no significant change. FLEXTM shows the best improvement for both IKGE and IKGL.
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the receiver catchments. The overall results provide some evidence for the value of explicitly considering both
landscape-driven intracatchment process heterogeneity and the influence of intercatchment vegetation differ-
ences using independent estimates of root zone storage capacity to increase model transferability. Note, howev-
er, that in a few specific cases, FLEXTM cannot outperform the other models tested in this study. This is for
example the case for transferring the model from P.80 to P.14 (Figure 6) and highlights the potential influence
of additional factors not considered in this study, such as geology or soil types. In most cases in this study, how-
ever, the transferability of the four models follows the sequence FLEXTM> FLEXLM> FLEXT> FLEXL.

5.3. Two Transfer Cases
To better illustrate the considerable influence of heterogeneity in topography and vegetation cover (using
SuMax and NDVI as proxies) on the composition of dominant processes in a catchment and thus for spatial
model transferability, we will in the following discuss two specific transfer cases in detail. One transfer case
concerns two catchments with similar landscapes and size (Figure 7), i.e., from P.71 to P.4A, both of which
are dominated by hillslopes (pW< 11%, pT< 16%, pH> 70%) and dense vegetation cover (NDVI> 0.70). The
second transfer case concerns catchments with very different landscape features (Figure 7), i.e., from P.5 to
P.4A. Catchment P.5 has a larger proportion of wetlands and terraces (pW � 40%, pT �24%, pH � 35%) and
a less dense vegetation cover than P.4A (NDVI � 0.55). The hydrograph and FDC of the receiver catchment
P.4A are shown in Figures 8 and 9, and which are generated by all the Pareto-optimal parameter sets
obtained from the donor catchments P.71 and P. 5.

We found that when transferring between similar catchments, with comparable topography and vegetation cover,
i.e., from P.71 to P.4A, not surprisingly, FLEXL performs much better than from P.5 to P.4A with different landscapes.

While the FLEXL does largely pick up the timing of peaks (Figure 8) especially when transferring from P.5 to
P.4A, it significantly overestimates the flow (Figures 8 and 9), indicating that the flux partitioning in P.4A is

Figure 7. Comparison of landscapes for two specific transfer cases: (a) transfer between catchments with similar landscape (donor: P.71, receiver: P.4A), (b) transfer between distinct
landscapes (donor: P.5, receiver: P.4A).
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not adequately reproduced. The results further illustrate that directly transferring parameters obtained from
FLEXL without consideration of the differences in hydrological function may result in serious misrepresenta-
tions of the system response, especially peak flows, in the receiver catchments, as demonstrated by many
previous studies [e.g., Heuvelmans et al., 2004; Uhlenbrook et al., 2010; Gao et al., 2014a], strongly indicating
an insufficient representation of processes heterogeneity in the FLEXL model.

When considering either vegetation (FLEXLM) or topography (FLEXT), however, the simulations in the receiv-
er catchments experience significant performance improvements. The model transfer is most successful in
this example catchment when involving both vegetation information, in terms of spatially distributed, a pri-
ori estimated values of SuMax, and topography, in terms of spatial process heterogeneity, in FLEXTM.

5.4. The Modeled Water Balance of FLEXTM

The modeled components of the flow generated in the individual landscape units for the two selected illus-
trative cases (transfer from P.71 and P.5 to P.4A) are given in Figure 10. The results clearly suggest that in
the donor catchments (P.71 and P.5), most runoff toward the end of dry and the beginning of wet season is

Figure 8. Observed (black line), modeled runoff by transfer (grey-shaded area), and calibrated hydrographs (red line) of the four models in the receiver catchment P.4A for (a) transfer of
both model structure and parameters from donor catchment P.71 characterized by similar landscapes and (b) from donor catchment P.5 characterized by different landscape composi-
tion. This illustrates that accounting topographic and vegetation information allows more robust model transferability among catchments with different landscapes.
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generated from wetlands, in spite of their limited area (Table 1), thus clearly reflecting the intended process
conceptualization. Further, runoff generation from hillslopes, in particular during wetting-up conditions,
does not reflect its dominant areal proportion (Table 1), due to the considerable higher storage deficits, sus-
tained by deeper groundwater tables and higher interception evaporation and plant transpiration rates
than in the agriculturally dominated wetlands. However, with the increase of soil moisture, the proportion
of runoff from hillslopes becomes more important during the wet seasons. It was also observed that in the
model, terraces do not generate direct runoff, except for the end of the wet season, although they cover a
considerable area in the catchments, which mirrors the a priori defined hydrological function of the terrace
landscape unit. P.4A has a similar hydrological characteristic, but due to the dominance of hillslopes, a larg-
er amount of runoff is generated from there. The similarity of simulated hydrograph components, no matter
if transferred from P.71 or P.5, indicates a certain level of robustness of FLEXTM to reproduce model-internal
dynamics that are in line with our understanding of catchment functioning. In general, these results suggest
that a model allowing for some degree of landscape heterogeneity, such as FLEXTM, provides means for a
more meaningful representation of the distinct flow dynamics in wet and dry seasons, caused by runoff
contributions from different parts of the landscape, which is also beneficial for model transfer.

In Table 3, the modeled fluxes for the P.4A catchment and its different individual landscapes elements,
obtained by Pareto-optimal parameters from P.5, are given. The results suggest that wetlands, due to their
limited storage capacity, generate considerably more runoff per unit area (554–746mm/a) than hillslopes
(141–318mm/a). Terraces contribute least to storm flow (34–71mm/a) due to their flat slopes and, related to
that, the elevated amounts of percolation (345–573mm/a). By comparison, we found that the fast runoff

Figure 9. Observed and modeled flow duration curves (in normal scale, left and in semi-log scale, right) of receiver catchment P.4A, when
using the model parameters obtained from calibration in the donor catchments (two top figures) P.71 and (two bottom figures) P.5.
Lumped model can also reproduce FDC while transferring among similar catchments, but fails to reproduce FDC of catchments with differ-
ent landscape features.
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generated from wetlands of each unit is over 2–5 times larger than the runoff generated from each unit of
hillslopes, not to mention terraces.

It is worthwhile to check the simulated evaporation from different landscapes as well. The modeled evapo-
ration and transpiration from wetlands (996–1253mm/a) is higher than from hillslopes (520–759 mm/a) and
terraces (445–749 mm/a). Being less moisture constrained, wetlands not only generate larger proportion of
runoff but also contribute larger proportions of evaporation and transpiration than other landscapes. The
overall water balance clearly shows, for that example, that FLEXL considerably underestimates evaporative
fluxes and overestimates runoff when transferred from P.5 (Figure 11). The other model setups (FLEXT,
FLEXLM, FLEXTM) that allow some flexibility for the transfer of the parameters controlling water availability
for transpiration, i.e., the root zone storage capacity (SuMax), produce considerably more adequate estimates

Figure 10. Modeled hydrograph components obtained by FLEXTM, (here: average values of all modeled hydrographs obtained from the
set of feasible solutions), using the model parameters calibrated in donor catchments (top left) P.71 and (bottom left) P.5, respectively, in
the receiver catchment P.4A (right). Different proportion of landscapes with distinctive water balance allows better model transferability.

Table 3. Modeled Water Balance of Individual Fluxes in Catchment P.4A Using the Set of Pareto-Optimal Parameters Obtained From
Calibration in P.5a

Entire Catchment Hillslope Terrace Wetland

Fluxes Fluxes Fluxes Fluxes

P (mm/a) 1274 P (mm/a) 1274 P (mm/a) 1274 P (mm/a) 1274
Qm (mm/a) (282, 427) QfH (mm/a) (141, 318) QfT (mm/a) (34, 71) QfW (mm/a) (554, 746)
Ei (mm/a) (163, 382) EaH (mm/a) (520, 759) EaT (mm/a) (445, 749) EaW (mm/a) (996, 1253)
Qs (mm/a) (108, 134) RslH (mm/a) (110, 141) PercT (mm/a) (345, 573)

aRainfall (P), interception (Ei), modeled runoff (Qm), and groundwater flow (Qs) are for the entire catchments. The remaining fluxes are
given per unit area of each landscape unit. EaH, EaT, EaW indicate transpiration from hillslope, terrace, and wetland. QfH, QfT, and QfW indi-
cate subsurface flow from hillslope, and saturated overland flow from terrace and wetland separately. RslH indicates preferential
recharge of groundwater on hillslope; PercT indicates the percolation on terrace. The values in brackets indicate the ranges of the
modeled fluxes as obtained by the Pareto-optimal parameter sets.
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of annual flow volumes in P.5. This underlines the importance of a plausible inter and intracatchment repre-
sentation of root zone storage capacities, and thus the role of vegetation and its intracatchment distribution
as controlling factor for flux partitioning in such water.

6. Discussion

This study is primarily meant to highlight the considerable explanatory power of landscape and ecosystem
heterogeneity to characterize the heterogeneity of the dominant hydrological processes. The study is not
meant to provide a full regionalization framework or to present an operational model for the study area,
and therefore no recalibration or additional regionalization efforts of model parameters were attempted. In
the following sections, we discuss the implications and potential of using landscape and ecosystem proper-
ties for model transferability, model consistency, and prediction in ungauged basins.

6.1. The Influence of Vegetation and Topography on Model Transferability
As emphasized in many previous studies, spatial proximity does not necessarily entail hydrological similarity
[e.g., B�ardossy et al., 2005; Ali et al., 2012]. It is therefore not surprising to find here that a direct transfer of
lumped models and their parameters without further calibration to other study catchments does in general
fail. However, it can be observed that in the validation period the lumped FLEXL model is, for most catch-
ments, outperformed by one or more of the other three models, but in particular by FLEXTM that allows for
both topographic heterogeneity and a priori estimates of the root zone storage capacity without further
recalibration. This suggests that, in the study region, both topography and vegetation contain relevant
information on runoff generation processes.

More specifically, the inclusion of vegetation information by adapting SuMax (i.e., the storage capacity
required by vegetation to overcome dry periods with a specific return period) to the observed environmen-
tal conditions improved model transferability in most study catchments, even if all other model parameters
were left unchanged. The results provide supporting evidence that—first-order accurate—estimates of the
root zone storage capacity SuMax, based on climate data and simple vegetation indicators as suggested in
recent studies [Gao et al., 2014b; de Boer-Euser et al., 2016], can be efficiently used for hydrological model-
ing, to replace detailed information on soils and rooting depth. For example, due to less dense vegetation,
P.5 requires a smaller root zone storage capacity than the more densely vegetated P.4A catchment. Thus,
when using P.5 (SuMax5189mm) as donor catchment and directly transferring its root zone storage capacity
to P.4A using FLEXL, the buffering capacity is too low to supply sufficient water for the evaporative water
demand, resulting in significant overestimation of both the annual runoff volume (Figure 11) and peak flow
events (Figures 9 and 10). In contrast, adapting SuMax to the denser vegetation cover and, implicitly, the
higher canopy water demand of P.4A in FLEXLM (SuMax 5 521 mm, Figure 11) significantly increases the
model’s ability to moderate high flows and to better reproduce mean annual flows (and thus also

Figure 11. The modeled water balance of the four models for the transfer from donor catchment P.5 to receiver catchment P.4A. The fluxes (mm/a) are the mean modeled values
obtained by all Pareto-optimal solutions calibrated based on P.5. P is the long-term mean precipitation; E are the long-term mean evaporative fluxes from the entire catchment; EH, ET,
and EW are the evaporative fluxes per unit area from the individual landscape classes; Qo is the long-term observed catchment runoff; and Qm is the long-term modeled catchment run-
off. Three models (FLEXLM, FLEXT, and FLEXTM) applying different approaches to consider landscapes heterogeneity allow more realistic water balance simulation while being transferred.
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transpiration amounts) that are closer to the observations. The results therefore clearly illustrate the role of
vegetation in partitioning water fluxes and the value of using climate-based estimates of root zone storage
capacities in hydrological models.

In addition, few studies explicitly investigated the influence of topography on model transferability, although
numerous hydrological models [e.g., Beven and Kirkby, 1979; Reggiani et al., 2000; Gharari et al., 2014] have
been developed based on topographic information. Here, the strategy to use landscape heterogeneity as a
proxy for process heterogeneity has proven effective for improving both model consistency and transferabili-
ty. For example, P.5 has a large spatial extent of wetlands and terraces (Table 1, Figures 1g and 7), which are
characterized by a relatively shallow root zone storage capacity. In contrast, P.4A is dominated by hillslopes
(Table 1, Figures 1g and 7), with a larger SuMax which allows the development of higher moisture deficits and
which, in turn after a dry spell requires more water to establish hydrological connectivity. FLEXT takes the pro-
portions of three different landscapes into account, considering the differences in root storage capacity
between them (Figure 11). This significantly improves model transferability as compared to the lumped FLEXL

model, in particular when transferring to catchments with more topographic heterogeneity.

In fact, the major difference between the lumped model and the other models is the description of the
unsaturated root zone reservoir (Su, Figure 11). While FLEXLM accounts for vegetation differences between
catchments by direct estimation of SuMax from climatic and vegetation data, FLEXT, in contrast, determines
SuMax in different landscapes based on topographic information and assumptions on the position of the
groundwater table, with FLEXTM combining both approaches. The significantly improved transfer capacity
of these models compared to FLEXL, indicates that a more detailed description of the root zone storage
capacity is essential to improve model transferability in the study region and ultimately to adequately repre-
sent the dominant hydrological processes.

6.2. Hydrological Consistency of Model Results
The semidistributed FLEXT and FLEXTM model setups not only exhibit a generally better performance than the
lumped FLEXL model, but also, and maybe more importantly, produce internal process dynamics that are broad-
ly consistent with the modelers’ understanding and expectation of how different parts of the system should
respond differently. The results suggest that already a limited level of additional process heterogeneity, as
encapsulated in a semidistributed model formulation, has considerable value for reproducing observed
response dynamics. Note, that variability in hydrological response dynamics between catchments is clearly influ-
enced by factors (e.g., geology, soils, etc.) other than landscape and vegetation as well. However, the general
results of this study provide supporting evidence that both, landscape and vegetation, cannot only exert consid-
erable influence but that these influences are relatively unproblematic to meaningfully implement and parame-
terize at an adequate scale of interest in a model independent of further calibration efforts. The chosen strategy
therefore has a crucial advantage over standard applications of semidistributed models: in spite of a relatively
high number of parameters, the number of free calibration parameters is comparably low as landscape propor-
tions and root zone storage capacities are directly estimated from data, thereby efficiently limiting the adverse
effects of equifinality. Nevertheless, with the FLEXTM model with 11 calibrated parameters, significant equifinality
remains, which may lead to some of the parameter values having ambiguous significance and uncertainty in
simulated results (Table 3). Work is needed to further reduce the need for calibration.

The use of a parallel structure in these models is supported by field experiments [Zhao, 1984; Pfister, 2006].
For example, the results of many tracer and piezometer experiments highlight the difference in runoff gen-
eration mechanisms between riparian areas and hillslopes [McGlynn and McDonnell, 2003; Molenat et al.,
2008; Detty and McGuire, 2010]. Here, the individually modeled hydrograph components (Figure 10 and sec-
tion 5.5) and evaporation (Table 3) meet the expected system internal dynamics and do not contradict with
existing experimental knowledge in hillslope and catchment hydrology [Yu, et al., 2001; McGlynn and
McDonnell, 2003]. Specifically, in the beginning of a wet season, most peak flows are generated from wet-
lands. Gradually, more water is discharged from hillslopes as the catchment wets up and the soil moisture
deficits on the hillslopes are eventually reduced. During large storm events, terraces become saturated,
therefore contributing to runoff. Lumped representations of a catchment (i.e., FLEXL) cannot reproduce
these characteristic features of the hydrological response. However due to the relatively complex model
structure and the elevated numbers of parameters, it is difficult to meaningfully test models such as FLEXTM

by temporal split-sample validation at one specific study site. With the help of a transferability test, the
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designed model setups could be tested more robustly by transferring from a calibrated donor catchment to
receiver catchments, indicating an increasingly robust transfer performance for the suite of suggested mod-
els. Although this clearly indicates increasingly adequate process representations, the suggested model
concepts still require quantitative evaluation against more detailed experimental data.

6.3. Implications for Regionalization and PUB
Previous research efforts on prediction in ungauged basins (PUB) focused mostly on the development of suit-
able parameter regionalization techniques for relatively simple, lumped models [e.g., Merz and Bl€oschl, 2004;
Parajka et al., 2005] applying the same model structure in donor and receiver catchments. Although shown to
be valuable for use in catchments with similar geomorphic features, the use of lumped models, even if suit-
able for calibration in individual catchment, disregards the fact that field experiments underline the impor-
tance of distinguishing between dominant hydrological processes in different landscapes [McGlynn and
McDonnell, 2003; Molenat et al., 2008; Detty and McGuire, 2010] within and between individual catchments. In
such cases, the mere regionalization of parameters in lumped models may, depending on the model, not be
sufficient to account for this heterogeneity, thus requiring more flexible model structures with parallel compo-
nents. These components can introduce heterogeneity by different architectures, different parameter values,
or both. This is clearly highlighted by the results of the present study, which demonstrate the value of such a
landscape driven, semidistributed setup of parallel model structures with distinct processes and parameter
values. It was shown here, that calibrating FLEXT in a donor catchment and transferring it by merely adjusting
the areal proportions of the individual landscape units without further calibration or regionalized parameter
estimates to receiver catchments can significantly improve the results in comparison to the transfer of FLEXL.
This further supports earlier studies [e.g., Hrachowitz et al., 2014] that already the distinction in different land-
scape units, based on readily available information, and contains considerable information on the hydrological
function of the system within a hydroclimatically homogeneous region.

Similarly, adjustments of SuMax in FLEXLM according to the local precipitation and transpiration characteristics in
receiver catchments proved, without recalibration of other parameters, highly beneficial for model transferabili-
ty and underpins the importance of this parameter for meaningful flux partitioning. The use of direct SuMax esti-
mates is, however, at this point limited to catchments where sufficient data, i.e., at least either estimates of
average annual flow or actual evaporation (e.g., from remote sensing products), are available. If these are avail-
able, the combination of topographic heterogeneity and vegetation heterogeneity (FLEXTM) is a potentially
powerful tool for predicting the hydrological response in ungauged catchments, provided some level of calibra-
tion is possible within the same hydroclimatic region. Future studies may want to test to which level the sug-
gested approach is complementary to traditional regionalization techniques to improve our ability to predict
flows in ungauged catchments. In general, it may be noted that the suggested techniques for spatial model
transfer are expected to be particularly useful in relatively dry environments, such as in the tropical savannah
study region, where the pronounced differences between wet and dry seasons and the associated changes in
hydrologically active areas within catchments, together with the dominance of evaporative fluxes over stream
flow, and through transpiration, the importance of vegetation control the hydrological response. Efforts to pre-
dict runoff in ungauged basins in such semiarid climate zones benefit from the suggested model transfer meth-
od, as no longer local or regional empirical transfer functions for parameter regionalization are required.

Notwithstanding these findings, some limitations and open questions remain. On the one hand, the direct
estimation of SuMax is still dependent on reliable estimates of catchment-averaged precipitation, potential
evaporation, and runoff. Although precipitation data are, through remote sensing products, globally available,
the uncertainty in these data may cause a considerable bias in the SuMax estimates. Likewise, runoff observa-
tions are typically subject to uncertainties, in particular for high flows [e.g., Coxon et al., 2015; McMillan and
Westerberg, 2015] and, similarly, the choice of the method to potential evaporation may also somewhat affect
the results, although several previous studies suggest that these effects are minor at the catchment-scale [e.g.,
Oudin et al., 2005; Kleidon et al., 2014]. An alternative would be to use remotely sensed evaporation estimates,
but these still contain considerable uncertainty as well. In addition, direct estimation of SuMax should be made
subject to the different survival strategies of ecosystems, such as deciduous forests, grasses, evergreen forests,
or Eucalyptus species that develop very deep root systems to tap ground water. On the other hand, it should
be noted that even within hydroclimatically homogeneous regions, catchments can be characterized by dis-
tinct landscape units. In other words, even if a donor catchment accounts for several different landscape units,
a receiver catchment may require additional or other (e.g., glacier, bare rock, etc.) landscape units. Finally, the
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suggested approach does not yet account for model-structural distinctions due to geological factors which
may be dominant [e.g., Uhlenbrook et al., 2004; Fenicia et al., 2014, 2016].

7. Conclusions

Landscapes are essential in determining the dominant runoff generation mechanisms, model structure, and
parameterization. In this study, we developed four conceptual models with increasing complexity: a classical
lumped model serving as benchmark (FLEXL), a lumped model with independent estimates of root zone storage
capacity derived from hydroclimatological data (FLEXLM), a topography based semidistributed model (FLEXT),
and a topography-based semidistributed model with independent estimates of root zone storage capacity
derived from climate data and NDVI (FLEXTM). Fourteen study catchments, located in a tropical savannah region,
that is hydrologically less well understood than temperate regions, were used to test the performance of the
four model structures, by a calibration validation and transferability test. The calibration and time-validation
results indicate that all four models can, to a certain extent, mimic the hydrological behavior of the study catch-
ments. But model performance in space-validation differs significantly between models. We found that:

1. Both, intercatchment heterogeneity in vegetation and intracatchment heterogeneity in topography can
explain a considerable part of differences in hydrological function between catchments in this tropical
savannah region.

2. Accounting for both vegetation and topographic heterogeneity allowed to distinguish catchment char-
acteristics and to considerably increase model transferability without the need for empirical regionaliza-
tion relationships. Accounting for topography and vegetation simultaneously gave best transferability
results. Individually, accounting for vegetation heterogeneity by local adaptation of parameters describ-
ing the root zone storage capacity through independent, climate data-based estimation may be more
beneficial than purely topographic information in this specific climate.

3. The semidistributed modelling approach (FLEXT, FLEXTM) allows a more plausible representation of the sys-
tem internal dynamics and the dominant runoff generation mechanisms than the lumped model (FLEXL).
Explicitly allowing for topographic heterogeneity in a model can be highly valuable for predicting flows in
ungauged tropical savannah catchments. If at least estimates of annual flow averages are available in an
otherwise ungauged catchment, vegetation heterogeneity does also bear considerable potential to
improve flow predictions under data-limited conditions in this tropical savannah basin.

4. The results in general underline, for this climate region, the importance of (a) vegetation and its within-
catchment distribution for the partitioning of evaporative fluxes and runoff, due to high evaporative
demand and the seasonally markedly changing wetness conditions and (b) seasonally changing contrib-
uting areas due to pronounced dry and wet periods and the distinct hydrological function of different
parts of the landscape.

Notation

P precipitation (mm/d)
Ep means the potential evaporation, (mm/d)
pH area proportion of hillslopes
pT area proportion of terraces
pW area proportion of wetlands
INDVI dry seasonal averaged NDVI of entire catchment
INDVI,H dry seasonal averaged NDVI of the hillslopes
INDVI,T dry seasonal averaged NDVI of the terraces
IKGE Kling-Gupta Efficiency of hydrograph
IKGL Kling-Gupta Efficiency of the logarithmic hydrograph

FLEXL Model
Ei interception (mm/d)
Ea transpiration (mm/d)
Pe means the effective rainfall after interception (mm/d)
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Qff overland flow (mm/d)
Qf subsurface storm flow (mm/d)
Qs groundwater flow (mm/d)
Qm simulated runoff (mm/d)
Ru generated runoff of certain rainfall event (mm/d)
Rf generated fast runoff from the runoff generation routine (mm/d)
Rs generated slow runoff from the runoff generation routine (mm/d)
Rfl discharge into the fast response reservoir after the convolution (mm/d)
Rsl discharge into the slow response reservoir after the convolution (mm/d)
SiMax maximum storage capacity of interception reservoir (mm)
SuMax averaged storage capacity of unsaturated reservoir (mm)
b shape parameter of the tension water storage capacity curve
Ce threshold controls actual evaporation and transpiration
D splitter between surface runoff and groundwater recharge
TlagF parameter represents the time lag between storm and fast runoff generation (d)
TlagS lag time from preferential flow and percolation flow to the groundwater (d)
SfMax threshold of generating overland flow (mm)
Kff recession parameter of overland runoff (d)
Kf recession parameter of subsurface storm flow (d)
Ks recession parameter of groundwater flow (d)

FLEXT Model
EiH interception from hillslope (mm/d)
EiT interception from terrace (mm/d)
EiW interception from wetland (mm/d)
EaH transpiration from hillslope (mm/d)
EaT transpiration from terrace (mm/d)
EaW transpiration from hillslope (mm/d)
Pe effective rainfall after interception (mm/d)
QfH subsurface storm flow on hillslope (mm/d)
QfT saturated overland flow on terrace (mm/d)
QfW saturated overland flow on wetland (mm/d)
RslH recharge to the groundwater reservoir by preferential flow on hillslopes (mm/d)
PercT recharge to the groundwater reservoir by percolation on terraces (mm/d)
Qs groundwater flow (mm/d)
CR capillary rise from groundwater into unsaturated reservoir on wetland (mm/d)
SuMaxH root zone storage capacity on hillslope (mm)
SuMaxT root zone storage capacity on terrace (mm)
SuMaxW root zone storage capacity on wetland (mm)
PMax maximum percolation capacity from terrace to groundwater (mm/d)
KfH recession parameter of subsurface storm flow on hillslope (d)
KfTW recession parameter of saturated overland flow on wetland and terrace (d)
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