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Abstract: This paper demonstrates a procedure for deriving the Z–R relationship using poor temporal resolution gauge rainfall data and
evaluates its impact on runoff forecasting in the upper Ping River Basin in Northern Thailand. The procedure is based on the use of a scaling
logic to modify the Z–R relationship calibrated using daily (or other coarse) resolution ground rainfall data. This scaling procedure is dem-
onstrated using daily gauge data and results in radar rainfall estimates that lead to improved runoff simulations and flood forecasts for the
upper Ping River Basin compared with the case in which the daily (or raw) Z–R relationship is used or even when the daily gauge rainfall is
used alone. This evaluation is based on hourly comparisons for the high rainfall season over a period of 3 years (2004–2006) at six point
locations in the catchment. This scaling relationship has significant implications for flood modeling in most of the developing world that has
weather radar coverage and a daily gauge network but a limited continuous ground rainfall measuring network. DOI: 10.1061/(ASCE)HE
.1943-5584.0000616. © 2014 American Society of Civil Engineers.
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Introduction

Measured rainfall is a significant input in any hydrological model-
ing application. Weather radars have developed into viable alterna-
tives to ground-measured rainfall because of their ability to sample
in space and time (Seed and Austin 1990; Collinge and Kirby 1987;
Sun et al. 2000; Uijlenhoet 2001; Vieux 2003), especially in re-
gions with limited ground rainfall measuring networks (Yang et al.
2004; Segond et al. 2007). A number of studies vouch for the effi-
cacy of radar rainfall for flood estimation and forecasting as an al-
ternative to a sparse or poor ground rain-gauge network (Wyss et al.
1990; Pessoa et al. 1993; Borga et al. 2000; Sun et al. 2000; Morin
et al. 2009; Anquetin et al. 2010), although it is considered useful to
have a minimal ground rain-gauge network to assist with the speci-
fication and update of the radar reflectivity-rainfall relationship
(or the Z–R relationship) (Chumchean et al. 2006a, b). This paper
demonstrates an alternative for specifying the Z–R relationship in
regions having only daily or coarser resolution ground rainfall
data and evaluates the advantages that result when used for flood
modeling applications.

Use of a power-law Z–R relationship [Z ¼ ARb where Z is radar
reflectivity (mm6 m−3); R is the rainfall rate (mmh−1); and A and b
are parameters], calibrated against ground rainfall data located
within the radar coverage, is the traditional approach for radar

rainfall estimation (Battan 1973; Rinehart 1991; Doviak and Zrnic
1992; Collier 1996; Krajewski and Smith 2002).

The conventional approach to specifying the relationship (or the
parameters A and b) is to use the gauge rainfall data at the finest
resolution available and aggregate the radar rainfall to the same
resolution. The resulting Z–R relationship is then assumed to be
valid for use at other temporal resolutions and is often used to as-
certain radar rainfall at much finer resolutions than the available
gauge data. This assumption has been put into question by Mapiam
et al. (2009), with data from three radar locations and their asso-
ciated dense rain-gauge networks all pointing to the need for a
transformation for the A parameter of the Z–R relationship as a
function of the time resolution at which the rainfall is to be esti-
mated. Mapiam et al. (2009) goes further and proposes a transfor-
mation function for the A parameter of the Z–R relationship, which
is shown to be stable across the three regions at which it is tested.
Although the need for the preceding transformation appears justi-
fied when there is a mismatch in the temporal scales at which the
Z–R relationship is derived and used, its impact on flow estimation
has not been previously studied.

The question that arises is whether the aforementioned scaling
transformation enables better assessment of peak flow events in a
typical catchment and the radar rainfall could be applied for flood
forecasting purposes. This paper investigates the relative benefits
offered by the use of alternate rainfall estimation methods for sim-
ulation of the runoff hydrograph in the upper Ping River Basin,
Thailand. Daily gauge rainfall and two products of radar rainfall
were specified as inputs to the selected rainfall-runoff model for
runoff simulation. The daily gauge rainfall (DGR) was spatially
averaged by using the Thiessen polygon approach over the study
region to form the first of the evaluated rainfall input alternatives.
The first radar rainfall product, the hourly radar rainfall (HRR), was
ascertained using the climatological daily Z–R relationship pro-
posed by Mapiam and Sriwongsitanon (2008) to convert instanta-
neous radar reflectivity into radar rainfall intensity, followed by
accumulating the instantaneous radar rainfall into hourly radar
rainfall by using the algorithm proposed by Fabry et al. (1994).
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The second radar rainfall product was formulated by applying the
scaled transformation equation introduced by Mapiam et al. (2009)
to transform the daily A parameter of the Z–R relationship to an
hourly Z–R relationship. The hourly scale-transformed Z–R rela-
tionship was then used to calculate hourly radar rainfall (HRRS).
The DGR, HRR, and HRRS were used as the three alternative
rainfall inputs to the catchment simulation model for hourly flow
estimation at six runoff stations in the study area. For ease of com-
parison across the various methods, the DGR was assessed at
hourly time steps by considering hourly rain depths equal to
1=24 of the daily rainfall before inputting into the hydrological
model. A summary of the rationale behind the three data sets,
along with the benefits and drawbacks one could exert a priori,
is outlined in Table 1. The HRR and HRRS allow a direct com-
parison of the quality of radar rainfall to the daily gauge data
(DGR) that is available, whereas the hourly products (HRR and
HRRS) allow an assessment of whether the scaling logic results
in an improvement of the radar rainfall at finer timescales. Results
of flow estimated using these three rainfall products were finally
compared for their accuracy and effectiveness in the context of
flood forecasting.

The next section describes the study area and data collection,
followed by a description of the unified river basin simulator
(URBS), the rainfall-runoff model used for runoff estimation.
The methodology for estimating the three rainfall products is
discussed next, followed by a description of the application of
the URBS model for runoff estimation and an evaluation of
simulated runoff hydrographs using the various rainfall inputs.
Finally, the conclusions from the study are drawn in the last
section.

Study Area and Data Collection

Study Area

The study area is the upper Ping River Basin, which is situated
between latitude 17°14′30″ to 19°47′52″ N, and longitude 98°4′30″
to 99°22′30″ E in northern Thailand (Fig. 1). It covers the area
of approximately 25,370 km2 across the provinces of Chiang
Mai and Lam Phun. Approximately 80% of the basin is moun-
tainous. The basin landform ranges from an undulating to a roll-
ing terrain. The Ping River originates in the Chiang Dao District
in the north of Chiang Mai and flows downstream to the south
to become the inflow for the Bhumiphol Dam, which is a large
dam in Doi Tao District in Chiang Mai and has an active storage
capacity of 9.7 billionm3. The average annual rainfall and
runoff of the catchment are approximately 1,170 and 270 mm,
respectively.

Radar Reflectivity Data

Radar reflectivity data recorded from the Omkoi radar, owned and
operated by the Bureau of Royal Rainmaking and Agricultural
Aviation (BRRAA), was used for radar rainfall estimation in the
study subcatchments of the upper Ping River Basin. The Omkoi
radar is an S-band Doppler radar which transmits radiation with
a wavelength of 10.7 cm and produces a beam width of 1.2°. After
preprocessing, the used radar reflectivity data are provided in a
Cartesian grid of 480 × 480 km extent with a 1-km2 spatial reso-
lution and 6-min temporal resolution. The radar reflectivity data
provided by the BRRAA are pseudo-CAPPI reflectivities derived
from the 2.5-km constant altitude plan position indicator (CAPPI)
data at a range within 135 km from the radar site, from the lowest
plan position indicator (PPI) (0.6°) beyond the 136 km range.

Reflectivity, gauge rainfall, and runoff data recorded at the same
period were required for the analysis of this study. Three 2.5-km
pseudo-CAPPI reflectivity data sets from the Omkoi radar during
the rainy seasons for three years (June–October 2003, May–
September 2004, and May–July 2005) were used in this study.

Because S-band reflectivity data were used in this study, beam
attenuation was assumed to be insignificant (Hitschfeld and Bordan
1954; Delrieu et al. 2000). To avoid the effect of bright band and
different observation altitude in the measured radar reflectivity, the
pseudo-CAPPI reflectivity data that lie within the range where the
height of the base scan beam center (0.6°) is below the climatologi-
cal freezing level of Chaing Mai [approximately 4.9 km, according
to Silverman and Sukarnjanaset (2000)] was used in the analysis.
The maximum observation range that gives the height of the base
scan beam center below the freezing level of 4.9 km is approxi-
mately 160 km. Thus, only reflectivity data that lie within 160 km
of the radar were used in the analysis. Consequently, the reflectivity
data used in this study were considered to be free from the effects of
bright band and different observation altitudes.

To avoid the effect of noise and hail in the measured radar
reflectivity, reflectivity values less than 15 dBZ were assumed to
represent a reflectivity of 0 mm6 m−3, and those greater than
53 dBZ were assumed to equal 53 dBZ. Because the study area
is mountainous, the errors attributable to the effect of ground clut-
ter, beam blocking, and variations in the vertical profile of reflec-
tivity (VPR) are potentially important. The effect of ground clutter
and beam blocking were addressed by finding the clutter locations,
where high persistence in the reflectivity is exhibited, blocking this
area from the radar map, and then replacing the blocked locations
with interpolated data from surroundings pixels that are not affected
by clutter and beam blocking. Although variations in the VPR can
impact the estimation of radar rainfall (Chumchean et al. 2008),
lack of information about the VPR required the assumption that
its impact was not systematic and would not impact the conclusions
this study sought to draw.

Table 1. Summary of the Rainfall Data Products Evaluated

Rainfall
product Rationale Benefits and drawbacks

DGR Spatially averaged daily gauge rainfall, assessed at both daily and
hourly scales (hourly transformation performed using equal hourly
depths)

Use of crude disaggregation scheme to hourly is likely to lead to
smaller peaks in resulting flood hydrograph; daily results expected to
result in accurate outputs except for their inability to pick subdaily
peaks

HRR Using the same Z–R parameters based on daily gauge data and then
accumulated into hourly radar rainfall

The use of hourly radar rainfall offers a big improvement in the
subdaily temporal representation compared with the daily gauge
rainfall product

HRSS Same as HRR, except that the radar parameters are scaled to an hourly
time step using the transformation function proposed by Mapiam et al.
(2009)

Application of more suitable Z–R parameters than HRR can lead to
improvement of the accuracy on hourly radar rainfall estimates and the
resulting flow hydrographs

© ASCE 04014003-2 J. Hydrol. Eng.
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Ground Rainfall Data

There are 35 rain gauges located within 160 km of the Omkoi radar.
These rain gauges are owned and operated by the Royal Irrigation
Department (RID) and the Thai Meteorological Department
(TMD). Thirty-two stations are nonautomatic stations that provide
daily rainfall data, whereas only three rain gauges are automatic
stations. Because most of the gauges located inside and around
the project area are daily rain gauges, three sets of daily rain-gauge
rainfall data obtained from the network of 35 gauges for the same
period as the reflectivity data were used in this study. Quality con-
trol of these rain-gauge rainfall data was performed by considering
rainfall data from adjacent gauges and ensuring consistency in the
ensuing double mass curves. If unusual rainfall data were found,
these were excluded from the analysis.

Runoff Data

Continuous runoff data recorded from the six runoff stations
located in the upper Ping River Basin—P.21, P.71, P.14, P.24A,
P.77, and P.73—were used for model implementation in this study.
These stations are located within 160 km of the Omkoi radar, and
they have the catchment areas of 510, 1,727, 3,853, 454, 544, and
2,242 km2, respectively. P.73 is actually the most downstream of
the runoff stations P.1, P.5, P.71, P.77, P.76, and P.24A of the study
area with the whole catchment area of approximately 12,910 km2.
To avoid error in radar rainfall estimates resulting from the effects
of bright band and different observation altitudes, only a partial
catchment area of the P.73 (2,242 km2) located within the

160 km radar range (excluding the area of upstream runoff stations
P.1, P.5, P.71, P.77, P.76, and P.24A) were therefore considered in
the rainfall-runoff process in the study. Continuous runoff data
from its five upstream stations were also collected to be used as
inflow data during model simulation on P.73. All the runoff stations
used in the analysis are owned and operated by the RID. The in-
stantaneous runoff data at all stations collates flows on an hourly
basis, at the same periods as the reflectivity and rain-gauge rainfall
data, which were used in the analysis presented subsequently.

URBS Model

The unified river basin simulator (URBS) developed by Carroll
(2007)was chosen for runoff simulation for the current study. URBS
is a semidistributed nonlinear rainfall runoff routing model that can
account for the spatial and temporal variation of rainfall. This model
is based on research by Laurenson and Mein (1990) and has been
used extensively for flood forecasting by the Australian Bureau of
Meteorology and by the Chiangjiang (Yangtze) Water Resources
Commission in China (Malone et al. 2003; Jordan et al. 2004).
In the context of the study region, Mapiam and Sriwongsitanon
(2009) used the URBS model for flood estimation on the gauged
catchments in the upper Ping River Basin and later formulated some
relationships for use on the ungauged catchments of the basin.

The Split module—a runoff routing module of the URBS
model—was individually used for runoff estimation for the six run-
off stations (P.21, P.71, P.14, P.24A, P.77, and P.73). The hypothesis
of the Split module is that the rainfall excess on a subcatchment,

Fig. 1. The upper Ping River Basin and the locations of the radar, rain gauges, and runoff stations in the universal transverse mercator (UTM)
coordinate system

© ASCE 04014003-3 J. Hydrol. Eng.
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estimated by rainfall-runoff–loss models, is routed through the
catchment storage, located at the centroid of that subcatchment,
to the channel using a catchment routing relationship. Thereafter,
outflow from the catchment storage, which is the inflow of channel
storage (Qu), will be routed along a reach (distance from the cent-
roid to the outlet of the corresponding subcatchment) to the next
downstream subcatchment, using the Muskingum method. In this
study, flow components of the catchment and channel routing were
calculated by using simplified equations as shown in Eqs. (1) and
(2), respectively [see Carroll (2007) for the details on full equations]

Scatch ¼ β
ffiffiffiffi
A

p
Qm ð1Þ

where Scatch = catchment storage (m3s−1 h) of each subcatchment;
β = catchment lag parameter (h=km) for each subcatchment;
A = area of subcatchment (km2); m = dimensionless catchment
nonlinearity parameter; and Q = outflow of catchment storage
(m3=s) of the corresponding subcatchment

Schnl ¼ αL½xQu þ ð1 − xÞQd� ð2Þ
where Schnl = channel storage (m3s−1 h) for each subcatchment; α =
channel lag parameter (h=km) for each subcatchment; L = length of
a reach (km) considered in channel routing;Qu = inflow at upstream
end of a reach [includes subcatchment inflow, Q, calculated using
Eq (1)];Qd = outflow at downstream end of a channel reach (m3s−1)
of the corresponding subcatchment; and x =Muskingum translation
parameter.

The excess rainfall estimation on each subcatchment was calcu-
lated using the initial loss-proportional runoff model (IL-PR) for
pervious area and the spatial infiltration model for impervious area
assessment. The assumption of the IL-PR model is that the accu-
mulated rainfall depth starting from the beginning of a simulation
period (Ri) will be deducted by an initial loss (mm) until the Ri
exceeds the maximum initial loss (IL in mm). The proportional loss
using proportional runoff coefficient (pr, dimensionless) will later
be applied for an assessment. The pervious excess rainfall depth at
time t (Rper

t ) is given by

Rper
t

¼

8><
>:
0 if Ri ≤ IL

ðRi− ILÞ− ð1− prÞðRi− ILÞ if Ri > ILand ili−1 < IL

ðRi−Ri−1Þ− ð1− prÞðRi−Ri−1Þ if Ri > ILand ili−1 ¼ IL

9>=
>;

ð3Þ

Ri ¼ Rtot
t þ Ri−1 ð4Þ

where Rtot
t = rainfall depth during a time interval (Δt), which is

1 hour in this study. The accumulated initial loss at time t (ili),
can be described as

ili ¼
�
Ri if Ri ≤ IL

IL if Ri > IL

�
ð5Þ

The effective fraction of the area that is impervious (feff ) is
given by Eq. (6)

feff ¼ fu þ
Ft

Fmax
; MaxðfeffÞ ¼ 1 ð6Þ

where fu = existing fraction of the impervious area (fu ¼ 0 is as-
sumed for this study); Ft = cumulative infiltration into the pervious
area starting from the beginning of a simulation period; and Fmax =
maximum infiltration capacity of the subcatchment (IF parameter).

Excess rainfall (Rt) at time t on the corresponding subcatchment
can be calculated using Eq. (7)

Rt ¼ feffCimpRtot
t þ ð1 − feffÞRper

t ð7Þ
where Cimp = impervious runoff coefficient (the default is 1); and
Rper
t = calculated using the IL-PR model.
As the URBS model equations have been simplified, there are

seven model parameters necessary for the application. These
parameters are: (1) the channel lag parameter (α); (2) the catchment
nonlinearity parameter (m); (3) the Muskingum translation param-
eter (x); (4) the catchment lag parameter (β); (5) the initial loss (IL);
(6) the proportional runoff coefficient (PR); and (7) the maximum
infiltration rate (IF). However, as the parameters m and x do not
vary significantly from 0.8 and 0.3, respectively (Carroll 2007;
Jordan et al. 2004), both parameters were fixed at these values
in our study. As a result, only five model parameters were necessary
to specify on each subcatchment for further application in the study.
The parameters α and β are related to the runoff routing behavior,
and the parameters IL, PR, and IF are related to rainfall loss
estimation.

To implement the URBS model for runoff estimation, the catch-
ments corresponding to runoff stations P.21, P.71, P.14, P.24A,
P.77, and P.73 (Fig. 1) were divided into a number of subcatch-
ments (5, 15, 25, 5, 5, and 14, for each of the preceding main sub-
catchments, respectively). Each subcatchment was selected so as to
have similar size (sizes varied between 90 and 160 km2) and char-
acteristics. For each runoff station, the total rainfall for each sub-
catchment was estimated using three alternatives as described
subsequently. The total rainfall and a set of model parameters as-
sociated with each subcatchment were then used to simulate the
runoff hydrograph at the corresponding runoff station. Based on
an assumption of the URBS model, it is necessary to define the
five model parameters on each subcatchment. However, because
there is no runoff station located in other upstream subcatchments
of the six runoff stations, this becomes a difficult task. Conse-
quently, all subcatchments of each runoff station are considered
to have a uniform set of parameters. These model parameters
can be, and are usually, obtained by model calibration as explained
in “Assessment of Model Parameters.”

Catchment Rainfall Estimation

Three products of catchment rainfall (DGR, HRR, and HRRS) for
the three periods were ascertained to serve as the input data for the
URBS model for runoff estimation at the six runoff stations. The
products of daily rainfall (DGR) were assessed at both a daily time-
scale and also disaggregated to hourly by considering constant
hourly rain rates along the day before inputting into the URBS
model. The calculated rainfall during June–October 2003 was used
for model calibration, and May–September 2004 and May–July
2005 were used for model verification. Methods used for catchment
rainfall estimation are explained next.

Estimation of Daily Gauge Rainfall

Rain gauge rainfall data has generally been used to estimate areal
rainfall and then used as the input data to a rainfall-runoff model for
runoff and flood estimation. The DGR was spatially averaged using
the Thiessen polygon approach (Chow et al. 1988; Bae et al. 2008)
over the study region to form the first of the rainfall input alterna-
tives evaluated. Jiang et al. (2007) suggested that although many
methods are available for estimating mean areal rainfall such
as splines (regularized and tension), inverse distance weighting

© ASCE 04014003-4 J. Hydrol. Eng.
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(IDW), trend surface, and kriging, Thiessen polygon approach has
been selected for estimating mean areal rainfall over application
areas such as the Dongjiang Basin in south China. This is primarily
because this approach is probably the most common approach for
modeling the spatial distribution of rainfall and it is known to pro-
vide good results when used for relatively dense networks (Naoum
and Tsanis 2004). The approach has been widely used in many ap-
plications (Panigrahy et al. 2009; Bhat et al. 2010), including for
radar rainfall estimation (Wu et al. 2008). Furthermore, as the
model used in this study requires rainfall inputs at the subcatchment
level (and not at a pixel level), the added sophistication of the grid-
based rainfall interpolation approaches is not considered warranted.

In this research, 35 daily rain gauges located within and around
the upper Ping River Basin were used to construct the Thiessen
polygons. DGR for each subcatchment was calculated by multipli-
cation of the daily gauge rainfall and its corresponding weighting
factor from the associated polygon.

Estimation of Hourly Radar Rainfall

Various forms of Z–R relationships (Z ¼ ARb) for ascertaining
radar rainfall have been suggested in the literature (Marshall and
Palmer 1948; Joss and Waldvogel 1970; Battan 1973; Atlas et al.
1999; Uijlenhoet et al. 2003; Lee and Zawadzki 2005). However,
these relationships cannot be directly applied in all regions because
the A and b parameters of the Z–R relationship vary depending on
many factors, including their dependence on the rainfall drop size
distribution (DSD), which varies in both space and time. Typical
values of the multiplicative term A may range from 31 to 500
(Battan 1973; Seed et al. 1996, 2002; Steiner et al. 1999), whereas
the exponent b varies from 1 to 3 (Smith and Krajewski 1993), with
typical values between 1.2 and 1.8 (Battan 1973; Ulbrich 1983).
Because daily rain-gauge rainfall data are the finest resolution
available in the upper Ping River Basin, Mapiam and Sriwongsi-
tanon (2008) then developed a climatological Z–R relationship
(Z ¼ 74R1.6) based on daily data for radar rainfall estimation in
the upper Ping River Basin. This equation is unavoidably used
to assess radar rainfall at finer resolution than the available
gauge data.

To assess HRR, the daily Z–R relationship (Z ¼ 74R1.6) was
used to convert three instantaneous radar reflectivity data sets
of the Omkoi radar into instantaneous radar rainfall intensity. This
derived instantaneous radar rainfall at all pixels located in the six
gauged catchments was then accumulated into HRR by using the
accumulation method proposed by Fabry et al. (1994). The HRR
for each subcatchment was estimated by averaging radar rainfall of
all pixels located within a considered subcatchment, using a simple
arithmetic averaging method.

Estimation of Hourly Radar Rainfall using the Scaling
Transformation Equation

The A parameter of the Z–R relationship tends to decrease with a
decrease in the rainfall temporal resolution used to develop the re-
lationship. Application of daily (24-h) Z–R relationship to estimate
radar rainfall at finer temporal resolutions, especially at hourly
scale, can give significant error on extreme rainfall estimates
(Mapiam et al. 2009). To reduce this error, Mapiam et al. (2009)
proposed a climatological scaling transformation equation for con-
verting the A parameter that was calibrated using daily data to finer
resolutions as

At ¼
�

t
24

�−0.055
A24 ð8Þ

where t=24 = scale factor; t (h) = temporal resolution at which the
rainfall needs to be estimated; 24 (h) = reference temporal resolu-
tion of the radar rainfall; 0.055 = scaling exponent; and A24 and
At represent the parameter A in Z–R relationship at 24- and t-h res-
olutions, respectively.

From the results of Mapiam et al. (2009), it was evident that the
proposed scale- transformed equation of the Z–R relationship was
valid for the S-band radar and also exhibited significant improve-
ments in estimating extreme rainfall at finer temporal resolutions.
Therefore, the proposed scaling transformation equation in Eq. (8)
was used to estimate a scale-transformed hourly A parameter. The
scale-transformed hourly A parameter (A1) was estimated as

ðA1Þ ¼
�
1

24

�−0.055
ðA24Þ ð9Þ

The estimated scale-transformed hourly Z–R relationship
(Z ¼ 88R1.6) was used to convert instantaneous reflectivity data
into rainfall rate; thereafter, the instantaneous radar rainfall was
accumulated into an HRRS using the Fabry et al. (1994) method.

Application of the URBS Model for Runoff
Estimation

Assessment of Model Parameters

The URBS model was used to estimate hourly runoff hydrograph at
six runoff stations (P.21, P.71, P.14, P.24A, P.77, and P.73) by using
three rainfall products (DGR, HRR, and HRRS) as the input data.
One data set of radar reflectivity and rain-gauge data during June–
October 2003 were used in the model calibration (Fig. 2 is an ex-
ample of a time series of the three rainfall products at the runoff
station P.14). Model parameters of each runoff station were there-
fore analyzed individually for each rainfall product using the model
calibration process. Model calibration was carried out by adjusting
the five model parameters (α, β, IL, PR, and IF) until the optimal fit
between the observed and calculated hydrographs at each runoff
station was satisfied.

To reach the optimal set of model parameters corresponding to
each rainfall product at each runoff station, a grid-based parameter
search was used. The detailed methodology is described as follows:
1. Specify a uniform assessment point of each model parameter

covering the associated range for each grid to be used for the
URBS model simulation as presented in Table 2. In this re-
search, 21,870 parameter combinations were assessed at each
runoff station.

Fig. 2. Comparison of the three hourly rainfall products for the runoff
station P.14 during the calibration period
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2. By using each rainfall product as the input data for each runoff
station, every parameter set was individually applied to the
URBS model to estimate the hourly flow hydrographs. Overall
root mean square error (RMSE) between the calculated and
measured discharges for each simulation case was then as-
sessed using the following:

RMSE ¼
�PN

i¼1 ðQm;i −Qc;iÞ2
N

�
0.5

ð10Þ

where Qm;i denotes the observed discharge at time i; Qc;i =
calculated discharge at time i; and N = number of data points.

3. Estimate the optimal parameter set for each rainfall product at
each runoff station evaluated by minimizing the RMSE for all
simulation cases.

The results of model calibration explicitly show that the model
parameters change with rainfall products (depending upon the rain-
fall depths and their distribution) and runoff station as presented in
Table 3. According to the results, which show high variations be-
tween ground and radar rainfall products (e.g., Fig. 2) resulting in
significant differences of model parameters between the DGR and
the HRR and HRRS. On the other hand, smaller differences of the
model parameters exist between HRR and HRRS because the dis-
tribution of these rainfall products is the same but the difference is
only that the depth of HRR is higher than HRRS by the factor of
approximately 1.12 (caused by the scaled Z–R relationship).

By using these calibrated parameters for runoff estimation for
the chosen flow periods, the outcomes of model calibration iden-
tified by RMSE for each runoff station and each rainfall product are
summarized in Table 4. Fig. 3 illustrates the time series plots com-
paring the observed and calculated flow hydrographs using differ-
ent rainfall products at the runoff station P.24A. A comparison on
runoff accuracy in model applications using different rainfall prod-
ucts are discussed in “Evaluation of Simulated Runoff Hydrographs
Using Alternate Rainfall Inputs.”

Table 2. Model Parameter Values Used for Creating 21,870 Parameter
Combinations for Model Calibration

Runoff station
using the
parameters

Model parameter values used
in calibration process

α β IL (mm) PR IF (mm)

P.21, P.71, P.77, 0.1 5 0 0.05 700
P.24A, and P.14 0.2 6 10 0.07 800
— 0.3 7 20 0.09 900
— 0.4 8 30 0.11 1,000
— 0.5 9 40 0.13 1,100
— 0.6 — 50 0.15 1,200
— — — 60 0.17 1,300
— — — 80 0.19 1,400
— — — 100 0.21 1,500
P.73 0.1 5 0 0.19 300
— 0.2 6 10 0.21 400
— 0.3 7 20 0.23 500
— 0.4 8 30 0.25 600
— 0.5 9 40 0.27 700
— 0.6 — 50 0.29 800
— — — 60 0.31 900
— — — 80 0.33 1,000
— — — 100 0.35 1,100

Table 3. Model Parameters for Six Runoff Stations and Three Rainfall
Products

Runoff
station

Rainfall
product

Control parameters for the URBS model

α β IL PR IF

P.21 DGR 0.5 5 40 0.07 700
HRR 0.5 6 0 0.17 700
HRRS 0.5 6 0 0.19 700

P.71 DGR 0.5 9 100 0.05 700
HRR 0.3 5 50 0.13 700
HRRS 0.3 5 50 0.17 900

P.77 DGR 0.1 8 80 0.09 1,500
HRR 0.4 6 0 0.05 1,200
HRRS 0.5 6 10 0.07 1,200

P.24A DGR 0.5 9 60 0.17 700
HRR 0.2 5 10 0.09 1,400
HRRS 0.2 5 10 0.11 1,300

P.73 DGR 0.1 8 30 0.23 700
HRR 0.2 5 30 0.31 500
HRRS 0.2 5 30 0.33 500

P.14 DGR 0.2 8 100 0.09 1,200
HRR 0.1 6 0 0.17 1,500
HRRS 0.1 5 0 0.19 1,500

Table 4. RMSE during the Calibration and Verification Periods for Each
Runoff Station and Each Rainfall Product

Runoff
station

Rainfall
product

RMSE (m3=s)

Calibration period Verification period

(2003) (2004) (2005)

P.21 DGR 2.710 4.678 3.019
HRR 3.465 3.547 4.320
HRRS 3.479 3.462 3.826

P.71 DGR 7.280 9.946 15.696
HRR 6.271 11.349 14.409
HRRS 6.265 10.959 14.559

P.77 DGR 1.818 2.816 4.535
HRR 1.521 2.793 4.627
HRRS 1.516 2.809 4.645

P.24A DGR 2.760 4.230 3.980
HRR 2.370 4.063 2.955
HRRS 2.365 4.060 3.068

P.73 DGR 59.504 51.470 39.441
HRR 51.963 65.590 55.718
HRRS 53.823 58.523 47.307

P.14 DGR 12.745 22.342 37.434
HRR 15.608 36.206 22.156
HRRS 15.368 34.879 22.101

Fig. 3. Comparison of hourly observed and calculated flow hydro-
graphs at the runoff station P.24A during the calibration period
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Verification of the Calibrated Model Parameters

The verification process was carried out in this study to provide
more data sets to be used for the comparison of the accuracy
among different rainfall products and to ensure that the same data
set of the calibrated model parameters can be applied for other
rainfall events. Data during the periods May–September 2004
and May–July 2005 were used for an assessment. Results of
RMSE between the calculated and measured discharges for each
runoff station and each rainfall product during these two periods
are also summarized in Table 4, which shows that the accuracy of
the calculated flow hydrographs for the verification period reduce
compared with the results gained during the calibration period as
shown by increasing RMSE values. This is to be expected because
model parameters for the verification process cannot be changed to
minimize RMSE between the calculated and measured discharges
for each simulation case. Selected time series plots comparing

hourly observed and calculated flow hydrographs during the
verification period in 2004 at runoff station P.24A are presented
in Fig. 4.

Evaluation of Simulated Runoff Hydrographs Using
Alternate Rainfall Inputs

The three rainfall alternatives to be used as inputs were evaluated
for the simulation of flow hydrographs over the upper Ping River
Basin. Within those three rainfall inputs, any rainfall product that
can simulate a flow hydrograph closest to the observed hydrograph
was defined as the most suitable. To accomplish this objective, the
model structure (including model parameters) for each rainfall
product was kept the same; then the rainfall input was changed
to observe the differences that resulted. To ensure an unbiased out-
come from the study, the model evaluation was performed using
each set of model parameters to simulate three sets of flow hydro-
graphs using the three rainfall products as the input data. Hence, the
model was run 3 × 3 (nine) times for each runoff station and each
data period. The RMSE was the statistical measure to evaluate the
accuracy of the overall hydrograph for each simulation case. A
summary of the performance of all simulation cases is presented
in Table 5, which shows that for the overall 54 simulation cases,
there are 31 (57%), 12 (33%), and 11 (31%) cases of the HRRS,
HRR, and DGR, respectively, that can produce the minimum
RMSE among each case. The Table 5 also presents the total average
of the RMSE of each rainfall product for all parameter sets and
simulation periods (RMSE on the same row). It shows five runoff
stations (P.21, P.71, P.77, P.73, and P.14) where HRRS provided the
minimum RMSE. Only at the runoff station P.24A is the minimum
RMSE produced by DGR, but its RMSE is very close to that pro-
duced by HRRS (3.439 and 3.616, respectively). On the other hand,
there are four runoff stations (P.21, P.71, P.73, and P.14) where
DGR provided the maximum RMSE. There are only two runoff
stations (P.77 and P.24A) where the maximum RMSE is produced
by HRR. Table 5 also shows the percentage increment of the aver-
age RMSE from the minimum RMSE of any rainfall product at

Fig. 4. Comparison of hourly observed and calculated flow hydro-
graphs at the runoff station P.24A during the verification period

Table 5. Comparison of Model Performance in Runoff Estimation Using Three Different Rainfall Products

Gauge
station

Rainfall
product

RMSE (m3=s) of each parameter set used for flow simulation Increment of
average RMSE

from the
minimum
RMSE (%)

Calibration period Verification period

Total
average

2003 2004 2005

DGR HRR HRRS DGR HRR HRRS DGR HRR HRRS

P.21 DGR 2.710 4.848 5.528 4.678 8.504 9.364 3.019 5.435 6.141 5.581 55
HRR 4.398 3.465 3.508 3.763 3.547 3.811 2.249 4.320 5.033 3.788 5
HRRS 4.673 3.532 3.479 4.068 3.342 3.462 2.670 3.267 3.826 3.591 0

P.71 DGR 7.280 15.648 18.825 9.946 20.248 23.530 15.696 31.760 36.002 19.882 118
HRR 10.614 6.271 6.727 7.211 11.349 13.488 4.578 14.409 17.548 10.244 12
HRRS 11.711 6.545 6.265 7.603 9.239 10.959 3.614 11.689 14.559 9.132 0

P.77 DGR 1.818 2.036 1.968 2.816 2.209 2.791 4.535 3.960 4.654 2.976 6
HRR 1.762 1.521 1.614 2.790 2.793 3.315 5.462 4.627 5.605 3.277 16
HRRS 1.709 1.621 1.516 2.280 2.412 2.809 4.505 3.823 4.645 2.813 0

P.24A DGR 2.760 3.575 3.386 4.230 3.313 3.498 3.980 2.861 3.350 3.439 0
HRR 4.650 2.370 2.501 7.762 4.063 4.798 5.192 2.955 3.609 4.211 22
HRRS 3.798 2.488 2.365 6.379 3.548 4.060 4.269 2.574 3.068 3.616 5

P.73 DGR 59.504 63.192 61.256 51.470 65.391 67.391 39.441 62.888 63.475 59.334 15
HRR 58.464 51.963 57.527 52.252 65.590 67.590 33.896 55.718 57.806 55.645 8
HRRS 60.610 56.012 53.823 48.863 60.523 58.523 28.794 50.189 47.307 51.627 0

P.14 DGR 12.745 40.021 48.297 22.342 54.424 63.139 37.434 76.423 87.044 49.097 101
HRR 29.280 15.608 16.378 23.450 36.206 40.967 22.857 22.156 24.535 25.715 5
HRRS 31.536 16.018 15.368 23.427 31.055 34.879 24.580 20.523 22.101 24.388 0

Note: Stations where HRRS provided the minimum RMSE are indicated in bold font; stations where DGR provided the maximum RMSE are italic font.
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each runoff station. At four runoff stations (P.21, P.71, P.73, and
P.14), the DGR generated the increment percentage of approxi-
mately 55, 118, 15, and 101, respectively, which are quite high in
most cases. On the other hand, there are two stations (P.77 and
P.24A) where HRR generated a lower increment percentage of ap-
proximately 16 and 22, respectively, compared with the increment
percentage that DGR generated. This is especially true for the
HRRS that generated very little increment percentage of approxi-
mately 5% only at the runoff station P.24A. Finally, the comparison
of RMSE values of the three rainfall inputs for different simulation
cases at the six runoff stations is shown in Fig. 5, which presents the
RMSE of each rainfall product for all parameter sets and simulation
periods (RMSE on the same row) at each particular runoff station.
Fig. 5 has confirmed that HRRS can generate a lower RMSE be-
tween the calculated and measured discharges for each simulation
case compared with RMSE generated by HRR; this is especially the
case with respect to that generated by DGR. The preceding results
demonstrate that HRRS calculated by applying the scaling trans-
formation equation to the daily Z–R relationship leads to the most
appropriate rainfall data set for runoff simulation. This is a further
validation of the scaling results that were presented by Mapiam
et al. (2010), pointing to the need to further ascertain the specific
reasons that lead to the scaling rule being applicable.

Conclusions

Radar rainfall data can provide higher spatial and temporal resolu-
tion compared with rain-gauge measurements (AghaKouchak et al.
2010). Such higher resolutions have been known to lead to im-
provements in the accuracy of the resulting runoff sequences.
However, radar rainfall estimation requires continuous rain gauge
rainfall data to calibrate and update the Z–R relationship, such data
being usually unavailable in most of the developing world includ-
ing the upper Ping River Basin in northern Thailand, the study area
for this paper. In the absence of such data, the option that is usually
used is to aggregate the radar rainfall to a daily timescale and derive
the needed relationship using daily ground rainfall. This, however,
has been shown to lead to biased rainfall in Mapiam et al. (2009),
which presents a scaling rationale that allowed derivations of the
Z–R relationship at a time scale different to that used in the cali-
bration. The present paper uses this scaling rationale to modify the
Z–R relationship calibrated using daily ground rainfall data to
formulate a hourly rainfall product termed HRRS then verifies
whether HRRS leads to improvements in ensuing hydrological
applications if alternate rainfall inputs are used. Two additional
rainfall products are assessed—the DGR and the HRR evaluated
using the Z–R relationship calibrated from the daily gauge rainfall.

Fig. 5. Comparison of RMSE values of the three rainfall inputs for different simulation cases at the six runoff stations
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This assessment uses the URBS, a semidistributed rainfall-runoff
model, to assess the relative benefits of using either of these three
rainfall inputs. The accuracy of the overall flow hydrograph esti-
mated using the two products of radar rainfall (HRRS and HRR) as
inputs are explicitly higher than that using DGR. This result is a
likely artifact of the size of the catchment and the relatively sparse
daily rain-gauge network that is available to sample the daily rain-
fall distribution. The insights gained in this study would provide
more evidence alongside many other studies, which suggest that
radar rainfall can be used effectively to represent more accurate
rainfall product compared with rain-gauge rainfall (Johnson et al.
1999; Jayakrishnan et al. 2004; Waleed et al. 2009; Biggs and
Atkinson 2011). In addition, HRRS demonstrates consistently
accurate results in hourly runoff estimation of the overall flow hy-
drographs. Consequently, the scaling transformation used to derive
the HRRS rainfall product appears to have merit in formulating
continuous rainfall. It is expected that this transformation will
be of considerable use in locations where radar rainfall relation-
ships can only be calibrated against ground rainfall data measured
at a daily resolution.
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