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Abstract
The objective of this study was to use regression modelling, a form of statistical downscaling technique, to predict the daily rainfall
occurrence and rainfall amounts for a small river basin, the upper Ping River Basin (UPRB) in northern Thailand. Daily historic (1960e2005)
rainfall and a number of daily reanalysis variables (NCEP/NCAR) were used to create regression models that estimate the probabilities of
rainfall occurrence (wet days) and amounts (rainfall depth) at each of 29 rain gauge stations located in and around the UPRB. The regression
models were calibrated using historic (1960e1989) data and validated using historic (1990e2005) data. Regression models were later applied to
historic (1960e2005) GCM outputs (MPI-ESM-LR model) which were adjusted to correspond to the selected reanalysis variables using the
Nested Bias Correction (NBC) technique. Rainfall occurrence and amounts were predicted for the periods 2006e2050 and 2051e2100 for
RCP2.6, RCP4.5, RCP8.5 scenarios. Results show that the effects of climate change vary considerably across the catchment, with significantly
declines in both the number of wet days and rainfall depth in the wet- and especially the dry-season in the middle of the catchment but obviously
increase slightly towards the northern part of the catchment. Since the stepwise regression was used to select the atmospheric variables to form
the regression models for simulating rainfall occurrence and amount, different stations have their own predictors and can influence future rainfall
to vary significantly between 29 rain gauge stations. If the top three predictors were selected to form the regression models for simulating rainfall
occurrence and amount for all stations, the future rainfall characteristics possibly change and can be used to compare with those of presented in
this study. It will show either atmospheric predictors or climate change scenarios would have more effect on future rainfall characteristics.

Keywords: Statistical downscaling; Nested bias correction; MPI-ESM-LR model; Representation concentration pathways (RCPs); Ping River Basin
1. Introduction

An assessment of climate change impacts on hydrological
studies requires outputs of experiments from General Circu-
lation Models (GCMs). However, the GCMs are constrained
by their coarse spatial resolution to be used for resolving local
scale hydrological processes (Wilby and Wigley, 1997; Wilby
et al., 1999; Timbal et al., 2009). Downscaling techniques
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have therefore emerged to relate the regional scale atmo-
spheric variables to the local scale surface variables. Down-
scaling approaches can be separated into two categories;
dynamical and statistical techniques. Strengths and weak-
nesses of these two downscaling categories are clearly pre-
sented by Wilby et al. (2002). In dynamic downscaling
referred to as the Regional Climate Models (RCMs), the time-
varying atmospheric conditions supplied by GCMs are used to
drive a regional, numerical model in higher spatial resolution
(tens of kilometres) to simulate local conditions in greater
details. On the other hand, a statistical downscaling establishes
a statistical relationship from observations between large scale
variables and a single local variable and then subsequently
dministration). Production and hosting by Elsevier B.V. on behalf of KeAi.
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applies the developed relationship on the scenario GCM out-
puts to obtain a range of local variables. Statistical down-
scaling can be distinguished into three approaches: weather
classification schemes, stochastic weather generators, and
regression models (Wilby et al., 2004). Regression models
have been used by several scientists to simulate future rainfall
projections using either linear or nonlinear relationship be-
tween local scale surface variables and atmospheric variables
(Wilby and Wigley, 1997; Wilby et al., 1999; Dettinger et al.,
2004; Feng et al., 2014). Regression-based approach was also
successfully applied for simulating daily rainfall occurrence
and amount in the Yangtze River Basin (Guo et al., 2012),
Godavari River basin in India (Das and Umamahesh, 2016)
and 60 stations in South Korean (Min et al., 2011). Yhang
et al. (2017) compared the performances of different down-
scaling methods, focusing on East Asian summer monsoon.
The dynamical downscaling was conducted by the Regional
Model Program (RMP) of the Global/Regional Integrated
Model system (GRIMs), while the statistical downscaling was
performed through coupled pattern-based simple linear
regression. A combination of dynamical and statistical
downscaling has shown to produce the best results of simu-
lating the precipitation in both time and space.

Statistical characteristics of the reanalysis data and the
GCM outputs at the corresponding location and period used
for generating the regression relationships are normally
different. Bias correction technique is therefore usually
applied for adjusting these differences. The simplest bias
correction method focuses on the monthly mean difference
between these two data types (Graham et al., 2007). Haerter
et al. (2011) recommended that the differences of the stan-
dard deviation (STD) should also be considered together with
the mean differences to be able to significantly reduce the
statistical differences between the simulated (GCMs) and
observed (reanalysis) data. However, Johnson and Sharma
(2009) proposed a method called a Nested Bias Correction
(NBC) which involved nesting the GCM simulations into
monthly and annual time series of observed data, such that
monthly and annual means, variances and lag correlations are
appropriately simulated. The NBC has proved to provide
better performance in terms of prediction error at annual and
inter-annual time scales compared to a simple monthly
correction method (considering only the differences of means
and STD of the two data types). Moss et al. (2010) also sug-
gested that these RCPs scenarios can provide a framework for
modeling in the next stages of scenario-based research that
will yield valuable insights into the interaction of natural and
human-induced climate processes.

Rainfall changes in the upper Ping River Basin (UPRB)
would affect runoff flowing into the Bhumibol Dam, the major
dam which delivers the water supply for all sectors for the
lower Chao Phraya River Basin where Bangkokdthe capital
citydis located at the downstream of the UPRB. For water
resources management of the dam and for finding suitable
measures to mitigate water resources problems arising from
changes in climate conditions, it is important to estimate
future changes in rainfall in UPRB.
According to the flexibility, ease of implementation and
low computation requirements of the regression-based
approach (Wilby et al., 2004), regression models were used
in this study to analyze the future effects of climate change on
future rainfall at 29 locations within the UPRB and its sur-
rounding. The NBC and Simple Bias Correction (SBC) were
applied to the selected GCM predictors to calculate the bias
correction factors to be used for adjusting the scenario GCM
outputs. The RCPs scenarios from MPI-ESM-LR model
developed under the phase five of the Coupled Model Inter-
comparison Project (CMIP5) by Max Planck Institute for
Meteorology (MPI-M), Germany, were applied to simulate
future rainfall occurrence and amounts.

2. Study area and data
2.1. Study area
The UPRB is situated 17�1403000‒19�4705200N, 98�403000‒
99�2203000E in Chiangmai and Lamphun province in northern
Thailand (Fig. 1) (Mapiam et al., 2014). The UPRB is sepa-
rated from the lower Ping River Basin (LPRB) by the Bhu-
mibol Reservoir, which has an active storage capacity of
9.7╳109 m3. The Ping River, flowing along these two river
basins, is one of the main tributaries of Chao Phraya, the
largest river basin in Thailand, which drains more than one-
third of the country's land area.
2.2. Rainfall data
Daily rainfall occurrence and amounts observed at the 29
stations by the Royal Irrigation Department (Fig. 1) were used
to relate to the reanalysis variables to form the regression re-
lationships. The 22 stations with an index starting by 07 and
17 are located in Chiang Mai and Lumphun province,
respectively, while the 7 stations with an index starting by 20,
16 and 63 are located in Mae Hong Son, Lampang, and Tak
province, respectively. These rainfall stations were selected
according to their availability of the data for more than 96%
during the study period (1960e2005).
2.3. Reanalysis data
Reanalysis grid point data (2.5� � 2.5�) on a daily basis in
1960e2005 provided by the National Centers for Environ-
mental Prediction/Nation Center for Atmospheric Research
(NCEP/NCAR), USA, available at http://www.esrl.noaa.gov/
psd/data/gridded/data.ncep.reanalysis.html (Kalnay et al.,
1996) were utilized for the study.
2.4. General circulation model (GCM) outputs
The GCM outputs (1.875� � 1.875�) on a daily basis
simulated using the MPI-ESM-LR model developed under
CMIP5 by MPI-M, Germany (available at http://esgf-data.
dkrz.de/esgf-web-fe/) were selected for the study. In this
study, GCM outputs used are separated into 2 datasets. The

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
http://esgf-data.dkrz.de/esgf-web-fe/
http://esgf-data.dkrz.de/esgf-web-fe/


Fig. 1. The 29 rain gauge stations located within the upper Ping River Basin and its surrounding.
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first dataset which are the atmospheric variable values from
1960 to 2005 were used as baseline. The second set from 2006
to 2100 simulated under RCP2.6, RCP4.5, and RCP8.5 sce-
narios were used for future climate simulation.

3. Methodology
3.1. Data selection and preparation
Selected atmospheric variables of the reanalysis data must
correspond to the GCM outputs to be suitable for further use.
Corresponding 72 atmospheric variables (12 predictors at air
pressure varied between 4 and 11 levels) were downloaded
from NCEP/NCAR and MPI-ESM_LR model outputs. Before
carrying out any analysis on these atmospheric variables
available at the 4 and 6 grid points of the reanalysis data and
GCM outputs, respectively, these grid point data values were
averaged using Inverse Distance Square (IDS) to be the
values at the locations of the 29 rain gauge stations for further
uses.
3.2. Statistical downscaling for rainfall occurrence and
amounts
Regression analysis categorized as a statistical technique
was chosen to downscale the large scale atmospheric variable
values to be rainfall occurrence and amount at the 29 observed
stations. Method used for statistical downscaling are described
as in the following sections.

3.2.1. Regression models for estimating historical daily
rainfall occurrence and amounts

Rainfall data at 29 observed stations and 4 grid point
reanalysis variables covering and surrounding the UPRB were
divided into 2 sets to be used for evaluating the historical
rainfall occurrence and amounts using the regression models.
Data from 1960 to 1989 were used for model calibration to
form the regression equations. The acquired equations were
later validated for their performance using the data from 1990
to 2005. Only daily rainfall depth above a measurement error
of 0.3 mm categorized as a non-zero rainfall or a wet day was
used for generating rainfall occurrence and amounts in this
study.

(a) Daily rainfall occurrence

Daily probabilities of non-zero rainfall (a wet day) (Oi)
comprising the conditional probability of a wet day following
a dry day ( p10) and the conditional probability of a wet day
following a wet day ( p11) were calculated at each rain gauge
station. A moving window of 31 days length centered on a
given day was applied to calculate the daily probability in
order to maintain a seasonal transition (Mehrotra and Sharma,
2007; Rajagopalan and Lall, 1999).

Daily probabilities of non-zero rainfall (a wet day) (Oi) for
a given day i were correlated to the 72 reanalysis variable
values together with the transition probabilities of a wet day
(Oi�1) for a previous day (ie1) to form a regression rela-
tionship as suggested by Wilby et al. (1999) for each observed
station as shown in Eq. (1). Highly related atmospheric vari-
ables (Xi

n
i¼1) to the Oi compared to other variables were

chosen based on a stepwise multiple linear regression to form
the regression relationship. The a0, a1, …, an parameters
corresponding to the selected variables were estimated using
linear least square regression.

Oi ¼ a0 þ a1X1 þ a2X2 þ/þan�1Xn�1 þanXn: ð1Þ
Estimated critical probability (Oi) calculated using Eq. (1)

for a given station and day was compared to a uniformly
distributed random number r (0 � r � 1). A wet day was
returned once Oi � r.

(b) Daily rainfall amounts

Once a given station and day determined as a wet day, daily
rainfall amounts were then calculated using Eq. (2) proposed
by Kilsby et al. (1998). This equation is the relationship of
atmospheric variables (Xi

n
i¼1) highly related to rainfall

amounts ( Ri in mm) compared to other atmospheric variables.

Ri ¼ expðb0þb1X1þb2X2þ/þbn�1Xn�1þbnXnþ εÞ: ð2Þ
The b0, b1, …, bn parameters were estimated using linear

least square regression, and ε is the modeling error. The ex-
pected rainfall amounts E(Ri) can be estimated using Eq. (3).

EðRiÞ ¼∅CRexpðb0 þ b1X1 þ b2X2 þ/þ bn�1Xn�1 þ bnXnÞ:
ð3Þ

The CR value in Eq. (3) is an empirically bias correction
ratio to adjust the differences of the downscaled rainfall
amounts from the observed values. The random scaling factor
∅ with a mean of 1 was used to increase the variance of
rainfall amounts to better correspond to the observed values
(Wilby et al., 1999).

3.2.2. Evaluation of future daily rainfall occurrence and
amounts under RCPs scenarios

The acquired regression models used for estimating his-
torical rainfall occurrence and amounts at each of 29 observed
stations were later used for evaluating the future rainfall
occurrence and amounts at each station under different RCPs
scenarios.

Since the statistical characteristics of historical reanalysis
daily data differ from the GCM outputs, bias correction for the
GCM outputs needs to be carried out to adjust the GCM
outputs to correspond to the historical reanalysis data. In this
study, a Nested Bias Correction (NBC) proposed by Johnson
and Sharma (2009) was selected for bias correction to
reduce these differences. To test whether the performance of
the NBC is better than a Simple Bias Correction (SBC, a
conventional bias correction method), the comparison of their
performance was undertaken. A more efficient technique was
selected for an adjustment of the GCM outputs. Statistical
parameter values were also calculated using a moving window
concept with a length of 31 days centered at a given day.
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4. Results
4.1. Regression model development
Rainfall occurrence and amounts at 29 observed stations
were correlated to 72 reanalysis averaged values at the same
locations to form regression models at each rain gauge station.

4.1.1. Regression models for estimating rainfall occurrence
Daily probabilities of a wet previous day (Oi�1) were

highly correlated to daily probabilities of a wet given day (Oi)
at all of 29 rain gauge stations. Therefore, Oi�1 was selected
to form regression models for all stations. However, the 16
from 72 reanalysis predictors were chosen differently be-
tween these stations. Air10, omega250, and vwnd700 are the
top three predictors selected to form the models for gener-
ating rainfall occurrence at 28, 23, and 20 rain gauge stations,
Fig. 2. Scatter plots of the average monthly and annual wet days for
respectively. Fig. 2 shows that these regression equations can
reasonably simulate average wet days on the monthly and
annual basis for these 29 stations indicated by the statistical
values which are within a reliable range. These regression
models are therefore suitable to be confidently applied to
predict the daily probabilities of a wet given day at the 29
observed stations to be further used for simulating the rainfall
amounts.

4.1.2. Regression models for estimating rainfall amounts
Rainfall amounts of a previous day (Ri�1) are correlated to

that of a given day only at 18 stations within 29 stations. Their
relationships are not that high since rainfall amounts of the
consecutive days are not highly related to rainfall amounts of a
previous day. It is different from daily probabilities of a wet
previous day which were highly correlated to daily probabil-
ities of a wet given day at all study stations as described
29 rain gauge stations for calibration and validation processes.



261SAENGSAWANG S. et al. / Advances in Climate Change Research 8 (2017) 256e267
earlier. Among 72 predictors, 23 predictors were selected to
form the regression models for simulating rainfall amounts for
a given day (Ri) at 29 rain gauge stations. Unwnd850,
omega700, and omega500 are the top three predictors selected
to form the models for generating rainfall amounts at 19, 12,
and 11 rain gauge stations, respectively. Fig. 3 shows that
these regression equations can reasonably simulate rainfall
depth on the monthly and annual basis for these 29 stations
indicated by the statistical values which are within a reliable
range. These regression models are therefore suitable to be
confidently applied to predict the rainfall depth at 29 observed
stations.
4.2. Performances of NBC and SBC for bias correction
There are 16 and 23 predictors used to form regression
models for an estimation of rainfall occurrence and amounts,
Fig. 3. Scatter plots of the average monthly and annual rainfall amounts
respectively. However, some predictors were used for both
models and then made the overall 29 selected predictors. Bias
correction process was applied to these 29 GCM predictors
using NBC and SBC. Bias correction factors gained from this
process were used to adjust the scenario GCM outputs.

The comparison of the results gained by applying NBC and
SBC to the daily GCM predictors is shown in Table 1. It shows
that NBC can be used to bias the GCM predictors to be closer
to the reanalysis data than those of SBC. It can be seen that the
standard deviation and lag 1 autocorrelation of the daily and
monthly predictor values provided by NBC are significantly
closer to the reanalysis data than those of provided by SBC.
However, both methods can be used to bias the average values
very well. Three statistical indicators consisting of r, EI, and
Rel. RMSE were used to distinguish their performance.
Therefore, bias correctors gained from NBC were used to
adjust the scenario GCM outputs for predicting the future
for 29 rain gauge stations for calibration and validation processes.
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rainfall occurrence and amounts at 29 rain gauge stations in
and around the UPRB.
4.3. Future rainfall occurrence and amounts based on
RCPs scenarios

4.3.1. Rainfall occurrence
The reduction of the wet days for the scenarios RCP2.6,

RCP4.5, and RCP8.5 during the wet season (May to October)
are around 4.1%, 4.0% and 4.4%, respectively, and during the
dry season (November to April) are around 14.1%, 13.3%,
15.6%, respectively, compared to the historical GCM for
2006e2050. While the reduction of the wet days for these 3
scenarios during the wet season are around 4.3%, 5.1% and
7.8%, respectively, and during the dry season are around
15.0%, 18.5% and 25.8%, respectively, compared to the his-
torical GCM for 2051e2100. The percent reduction for the
wet and the dry season for these 3 scenarios are very similar
during the period 2006e2050 but the percentage reduction of
the wet days for the RCP8.5 are nearly 2 times compared to
that of for RCP2.6 during 2051e2100.

To be able to easily distinguish the changes of average wet
days among 29 rain gauge stations, the spread of changes of
average wet days for each scenario were compared to the wet
days obtained from historical GCM and shown as spatial
interpolation (carried out using IDS) during the wet- and the
dry-season as in Figs. 4 and 5, respectively. Fig. 4 shows that
wet days decline less than 10% at 24, 23, and 21 stations for
RCP2.6, RCP4.5 and RCP8.5, respectively, during the wet
season for 2006e2050. Wet days decline 10%e19% at 4, 4,
and 6 stations, respectively, in the middle of the catchment but
increase not more than 11% for RCP2.6, for RCP4.5 and
RCP8.5 toward northern part of the basin (see the black dots in
Fig. 4). Percentage change tends to be more extreme for
2051e2100 when wet days decline less than 10% at 24, 20,
and 19 stations, respectively. They decline 10%e40% at 4, 6,
and 4 stations, respectively, in the middle of the catchment and
decline the most for more than 40% for RCP8.5 in the middle
of the catchment (see the biggest grey dots in Fig. 4). They
increase no more than 11% for RCP2.6, RCP4.5 and RCP8.5
toward western- and northern-part of the basin (see the black
dots in Fig. 4).

Fig. 5 shows that wet days decline less than 19% at 23, 21,
and 20 stations for RCP2.6, RCP4.5 and RCP8.5, respectively,
during the dry season for 2006e2050. Wet days decline 20%e
59% at 6, 6, and 7 stations, respectively, in the middle of the
catchment but increase no more than 26% at 2 and 2 stations
for RCP4.5 and RCP8.5, respectively, toward northern part of
the basin. Percentage change tends to be more extreme for
2051e2100 when wet days decline less than 19% at 22, 19,
and 10 stations, respectively. They decline 20%e60% at 6, 8,
and 12 stations, respectively, in the middle of the catchment
and decline the most for more than 80% in the middle of the
catchment (see the biggest grey dots in Fig. 5). They increase
not more than 26% for RCP2.6, RCP4.5 and RCP8.5 toward
western- and northern-part of the basin (see the black dots in
Fig. 5).



Fig. 4. Changes of average wet days of each scenario compared to historical GCM during the wet season for 2006e2050 and 2051e2100.
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4.3.2. Rainfall amounts
The reduction of the rainfall depth for the scenarios

RCP2.6, RCP4.5, and RCP8.5 during the wet season are
around 5.1%, 3.8% and 4.2%, respectively, and during the dry
season are around 11.0%, 10.3%, 11.6%, respectively, for
2006e2050. While the reduction of the rainfall depth for these
3 scenarios during the wet season are around 6.3%, 8.6% and
12.6%, respectively, and during the dry season are around
12.0%, 16.6% and 27.2%, respectively, for 2051e2100. The
percent reduction for the wet and dry season for these 3 sce-
narios are insignificantly different during 2006e2050 but that
for the RCP8.5 are around 2 times compared to that of for
RCP2.6 during 2051e2100.

To be able to easily distinguish the changes of average
rainfall depth of 3 scenarios among 29 rain gauge stations, the
spread of changes in average rainfall depth for each scenario
were compared to the rainfall depth obtained from historical
GCM and shown as spatial interpolation (carried out using
IDS) during the wet- and the dry-season as in Figs. 6 and 7,
respectively. Fig. 6 shows that rainfall depth declines less than
20% at 22, 20, and 19 stations for RCP2.6, RCP4.5 and
RCP8.5, respectively, during the wet season for 2006e2050.
The most declines of 20%e39% for RCP4.5 and RCP8.5
located in the middle of the catchment (see the biggest red-
brown dots in Fig. 6). It increases not more than 20% at 7,
8, and 8 stations, respectively, towards northern-, southern-
and western-part of the basin. Percentage change tends to be
more extreme for 2051e2100 when rainfall depth declines
less than 20% at 19, 16, and 11 stations, respectively. It de-
clines 20%e39% at 2, 5, and 8 stations, respectively, in the
middle of the catchment. The most decline of more than 40%
located in the middle and southern part of the catchment for
RCP8.5 (see the biggest grey dots in Fig. 6). It increases not
more than 20% at 7, 7, and 5 stations, respectively, and in-
creases 21%e70% for RCP2.6, RCP4.5 and RCP8.5 located
towards northern- and southern-part of the basin (see the
biggest black dot and the big blue dot in Fig. 6).

Fig. 7 shows that rainfall depth declines less than 20% at
16, 16, and 15 stations for RCP2.6, RCP4.5 and RCP8.5,
respectively, during the dry season for 2006e2050. It declines



Fig. 5. Changes of average wet days of each scenario compared to historical GCM during the dry season for 2006e2050 and 2051e2100.
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20%e40% at 5, 5, and 4 stations, respectively. The most de-
clines of 40%e60% for RCP2.6 and RCP8.5 located in the
middle of the catchment (see the biggest green dots in Fig. 7).
It increases not more than 20% at 7, 7 and 7 stations for
RCP2.6, RCP4.5 and RCP8.5, respectively, towards northern
part of the basin. Percentage change tends to be more extreme
for 2051e2100 when rainfall depth declines less than 20% at
15, 10, and 6 stations, respectively, and declines 20%e80% at
7, 11, and 12 stations, respectively, in the middle of the
catchment. The most declines of 80%e100% for RCP8.5
located in the middle of the catchment (see the biggest grey
dots in Fig. 7). It however increases not more than 20% at 7, 8,
and 7 stations, respectively, towards northern part of the basin.

5. Conclusions

Future rainfall for the upper Ping River Basin (UPRB) was
assessed in this study using regression-based downscaling
technique. Stepwise regressionwas utilized to correlate between
daily historic reanalysis variables (NCEP/NCAR) and rainfall
occurrence and amounts at 29 rain gauge stations. For rainfall
occurrence simulation, daily probabilities of a wet previous day
were selected to form the regression models for all stations,
while air10, omega250, and vwnd250 are among top three
predictors selected at around 70% of all stations to form the
models. For rainfall amounts simulation, rainfall amounts of a
previous day were selected to form the regression models for
more than half of all study stations, while uwnd850, omega700,
and omega500 are the top three predictors selected at around
half of all stations to form the models. Statistical indicators
consisting of correlation coefficient, efficiency index, and
relative root mean square errors are shown to be within
acceptable range to define the robustness of the regression
models. Nested Bias Correction (NBC)was proved to be a better
technique to adjust the historic GCM outputs (MPI-ESM-LR
model) to be corresponded to the selected reanalysis variables
compared to the Simple Bias Correction (SBC) which is a
conventional method normally used.

Based on Stepwise regression models and 3 RCPs climate
scenarios, the effects of climate change vary considerably



Fig. 6. Changes of average rainfall amounts of each scenario compared to historical GCM during the wet season for 2006e2050 and 2051e2100.
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across the UPRB. The number of wet days and rainfall
amounts tend to decline for the whole basin, especially in the
middle of the catchment but obviously increase slightly to-
wards the northern part of the basin. These changes seem to be
more extreme for 2051e2100 than that for 2006e2050 and
more severe for the RCP8.5 than RCP4.5 and RCP2.6,
respectively. It is interesting for further investigation to see
whether climate variables selected for each station would have
more or less effect on fluctuation of rainfall occurrence and
amounts than the effects caused by applying the models to
different scenarios as well as the different GCMs.

6. Discussion

In this study, stepwise regression was used to select the
atmospheric variables to form the regression models for
simulating rainfall occurrence and amount. Different stations
have their own predictors and can influence future rainfall to
vary significantly between 29 rain gauge stations. This study
corresponds to the study carried out by Pervez and Henebry
(2014) who applied SDSM to downscale precipitation for
Ganges and Brahmaputra river basins in South Asia. Each of
60 sub-basins had their own predictors however only a few
predictors which had high selected frequency were used to
form the regression models for simulating rainfall occurrence
and amount. Therefore, the results of this study should
compare to the results gained by choosing the only top three
predictors selected in this study to form the regression models
for simulating the rainfall occurrence and amount at all sta-
tions. The results would show either atmospheric predictors or
climate change scenarios would have more effect on future
rainfall characteristics. The dependence between 29 rainfall
stations was also not considered in this study. Rainfall
occurrence and amount were simulated independently at in-
dividual station separately. However, in reality the rainfall at
nearby stations can be highly related. Thus, the rainfall gen-
eration should be simulated considering spatial correlation
while preserving serially independent. These two interesting
points should be further investigated to see whether the future
rainfall would vary significantly from the results gained in this



Fig. 7. Changes of average rainfall amounts of each scenario compared to historical GCM during the dry season for 2006e2050 and 2051e2100.
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study. Moreover, Gain et al. (2011) and Wilby et al. (1999)
emphasis that there is no GCM can thoroughly describe the
physical climate system, thus downscaled precipitation gained
from any GCM are uncertain. Since only one GCM was used
in this study, other GCMs should be utilized for simulating
rainfall occurrence and amount for the UPRB to reduce un-
certainty of future rainfall characteristics and the results can be
more properly used for water management of the basin.
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