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Abstract: This study presents an exhaustive evaluation of the performance of three statistical
downscaling techniques for generating daily rainfall occurrences at 22 rainfall stations in the upper
Ping river basin (UPRB), Thailand. The three downscaling techniques considered are the modified
Markov model (MMM), a stochastic model, and two variants of regression models, statistical models,
one with single relationship for all days of the year (RegressionYrly) and the other with individual
relationships for each of the 366 days (Regression366). A stepwise regression is applied to identify
the significant atmospheric (ATM) variables to be used as predictors in the downscaling models.
Aggregated wetness state indicators (WIs), representing the recent past wetness state for the previous
30, 90 or 365 days, are also considered as additional potential predictors since they have been effectively
used to represent the low-frequency variability in the downscaled sequences. Grouping of ATM and
all possible combinations of WI is used to form eight predictor sets comprising ATM, ATM-WI30,
ATM-WI90, ATM-WI365, ATM-WI30&90, ATM-WI30&365, ATM-WI90&365 and ATM-WI30&90&365.
These eight predictor sets were used to run the three downscaling techniques to create 24 combination
cases. These cases were first applied at each station individually (single site simulation) and thereafter
collectively at all sites (multisite simulations) following multisite downscaling models leading to 48
combination cases in total that were run and evaluated. The downscaling models were calibrated using
atmospheric variables from the National Centers for Environmental Prediction (NCEP) reanalysis
database and validated using representative General Circulation Models (GCM) data. Identification
of meaningful predictors to be used in downscaling, calibration and setting up of downscaling
models, running all 48 possible predictor combinations and a thorough evaluation of results required
considerable efforts and knowledge of the research area. The validation results show that the use of
WIs remarkably improves the accuracy of downscaling models in terms of simulation of standard
deviations of annual, monthly and seasonal wet days. By comparing the overall performance of the
three downscaling techniques keeping common sets of predictors, MMM provides the best results
of the simulated wet and dry spells as well as the standard deviation of monthly, seasonal and
annual wet days. These findings are consistent across both single site and multisite simulations.
Overall, the MMM multisite model with ATM and wetness indicators provides the best results.
Upon evaluating the combinations of ATM and sets of wetness indicators, ATM-WI30&90 and
ATM-WI30&365 were found to perform well during calibration in reproducing the overall rainfall
occurrence statistics while ATM-WI30&365 was found to significantly improve the accuracy of
monthly wet spells over the region. However, these models perform poorly during validation at
annual time scale. The use of multi-dimension bias correction approaches is recommended for
future research.
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1. Introduction

The coarse resolution of General Circulation Models (GCMs) offers some limitations while
assessing the impacts of climate change on hydrological processes as they often occur at a fine
catchment scale. Downscaling techniques are used to reduce this spatial mismatch by transferring the
GCM outputs from coarse scale to fine scale [1,2]. Broadly, downscaling techniques can be grouped
into four categories: regression model, weather pattern (weather typing) approach, stochastic weather
generator and limited-area model (LAM) [1,3]. LAM is also known as dynamical downscaling or
regional climate model (RCM). Regression model, weather pattern approach and stochastic weather
generator can also be viewed as a statistical/stochastic downscaling approach.

The dynamical downscaling approach simulates the physical realism of the future climate change
scenarios by using GCM data as a boundary condition of the region [3,4]. Although the approach
can provide high-resolution climate variables, it requires intensive computing resources in order to
setup and run the RCM over the study region. There have been quite a few applications of dynamical
downscaling approach over Southeast Asia [5–7].

The statistical downscaling approach is quite flexible, easier to use and computationally
inexpensive [2]. In statistical downscaling approach, a statistical relationship between current
large scale climate variables and the local climate variables is established and is later applied to
generate future climate scenarios under the assumption of no change in this relationship in the
future. The statistical downscaling output depends on the choice of predictors, downscaling domain,
downscaling techniques, the selected transfer function and the calibration period used to setup the
model [3,8–12]. All these factors need careful selection to produce reasonable and reliable outputs for a
climate change study.

A parametric model forms one of the most common and simplest types of stochastic downscaling
model. In simulating the rainfall occurrence, this type of model is normally based on a Markov chain [13].
A major drawback of the low-order Markov dependence model is the under representation of variability
at longer or higher time scales (variability over years), also known as low frequency variability [14–16].
Mehrotra and Sharma [16] proposed a modified Markov model (MMM) to incorporate low-frequency
variability in rainfall occurrence simulations. In the approach, a low-order Markov process is modified
to accommodate the low-frequency variability through a “wetness indicator (WI)” that is based on the
recent past behavior of rainfall state over the study region. The same model was applied by them in
the downscaling context as well [17].

It is common to simulate synthetic weather sequences at a single or several locations, independently.
However, spatial dependence of rainfall can play an important role on the resulting catchment response
and also on the outcome of the studies dealing with the climate change impact assessment over
large areas. Realizing this, Wilks [18] proposed an approach to capture the coherence of rainfall
at multiple locations over a region by making use of serially independent and spatially correlated
random numbers. This logic has since been successfully applied to simulate precipitation at multiple
locations [13,16,19–23]. The complexity of spatial intermittence of rainfall, in which precipitation
amount depend on neighboring stations being wet or dry, may pose some problems in the formulation
of the correlation matrix over a large network of stations and may end up with ill-defined correlation
matrices [13,16].

Many downscaling studies have been conducted in the past focusing on the assessment of the
impacts of climate change on hydrological processes in the upper Ping river basin (UPRB) [24–27].
Sharma and Babel [24] estimated future runoff applying the bias correction and spatial disaggregation
techniques to improve the characteristics of raw ECHAM4/OPYC precipitation. The future simulations
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showed a decrease of 13–19% in annual streamflow compared to the baseline time period and seasonal
streamflow pattern will be shifted. Wuthiwongyothin et al. [25] studied the effects of climate change
on hydrology based on dynamically downscaling using bias-corrected CSM3-GCM to project future
flow under A1B, A2 and B1 scenarios. The results show that the bias corrected rainfall outputs were
well matched to the observed data. Future rainfall depths are suitable to be used to project future flow,
which will increase 13% compared to the baseline time period. Wuthiwongyothin et al. [26] applied
quantile mapping technique to correct daily rainfall from MM5-RCM over the UPRB using different
distributions of Bernoulli–Weibull, Bernoulli–Gamma and non-parametric transformation. It was
found that quantile mapping was an efficiency technique to improve and reduce climate model output
bias. Therefore, the bias correction is normally technique to be done before quantifying any impacts
of climate change study. Quantile mapping technique is commonly used to correct biases of climate
model outputs. Although it is an effective technique to remove historical biases relative to observed
data, it can artificially corrupt the projection of future trends [28]. Furthermore, Homsi et al. [29] found
that linear scaling (LS) demonstrated the highest capability for precipitation downscaling comparing
to three bias correction methods comprising power transformation (PT), general quantile mapping
(GEQM) and gamma quantile mapping (GAQM). Saengsawang et al. [28] predicted future rainfall
under the Representative Concentration Pathway scenarios (RCP2.6, RCP4.5 and RCP8.5) in the UPRB
using regression-based downscaling to relate between rainfall depth and climate variables instead of
applying raw GCM rainfall data as applied in the aforementioned studies. They found that Nested
Bias Correction (NBC) is a better technique to correct the historical GCM compared to a conventional
method that normally applied to raw GCM rainfall data. The results show the effects of climate change
varied across the basin. Rainfall significantly decreased in the middle but increased towards the
northern part of the catchment. Since each station had its own predictors, it would be interesting to
investigate whether atmospheric predictors or climate change scenarios have more effect on future
rainfall characteristics. This study suggested to select the same predictors to form the regression models
for simulating rainfall occurrence and amount for all stations to clarify this question. These results
show that bias correction is essential to correct the biases in raw climate model output before using
them in climate change impact studies.

The need for intercomparison of downscaling techniques has been raised by many researchers
from time to time [17,30,31]. As the selection of a downscaling model is area as well as location specific,
a comparison of downscaling approaches helps us to know the performance of a model in comparison
to other available alternatives and to determine why or when a model performs well at a local scale.
The outcome of such studies also helps to improve our understanding of the spatial and temporal scale
of the atmosphere–surface environment relationship over the study region.

Keeping these issues in mind, we present here an exhaustive comparison of two commonly
used downscaling approaches, MMM and the linear regression model, in simulating daily rainfall
occurrences at 22 rainfall stations located in the UPRB. A common set of predictors across all stations
was selected for rainfall occurrence downscaling over the study region. These predictors were corrected
using NBC before applying to the downscaling approaches. The findings of the study were used
in a climate change study to project future rainfall behavior over the study region. The results also
reveal whether the MMM models can be adopted over simple regression approaches to enhance
model performance.

2. Materials and Methods

2.1. Downscaling Models

2.1.1. Regression Models

The multiple linear regression model proposed by Wilby et al. [2] was applied in this study to
generate rainfall occurrence. In the model, daily probabilities of a wet day following a dry day or a
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wet day (P1it ) for a given day t are calculated as a function of exogenous predictors (Xt) together with
the transition probabilities of a wet day (P1it−1 ) for a previous day t − 1, as shown in Equation (1):

P1it = α0 + αP1it−1
P1it−1 + α1X1t + α2X2t + . . .+ αn−1Xn− 1t + αnXnt, (1)

in the first model formulation, transition probability of each day for all datasets is calculated by using
a moving window of 31 days centered on the day of interest, resulting in 366 regression models for
each calendar day (called Regression366). In the second model formulation, a single regression model
is fitted to the whole data (called RegressionYrly).

2.1.2. Modified Markov Model (MMM)

The modified Markov model (MMM) was proposed by Mehrotra and Sharma [16] for generating
rainfall occurrences exhibiting low frequency variability by including wetness state indicators (WIs)
along with the transition probabilities of the simple Markov model. In the MMM, the probability of a
wet day can be expressed in term of Rt(k)|Zt(k), where Zt(k) represents a vector of conditioning variables
at a location k and at time t and can include previous time step(s) rainfall state(s) (wet or dry) and the
aggregated wetness state of immediate past time period(s) to assign daily and long-term persistence.
For the simplest case of a first-order standard Markov model, Zt(k) depends on Rt−1(k). While using
MMM as a downscaling model, atmospheric variables (representing the climate change conditions)
are also added in the vector Zt(k) [17,21]. More specifically, the vector Zt is defined as Rt−1,Xt and the
transition probability P(Rt|Rt−1,Xt) is calculated by using the following parameterization (reproduced
from Mehrotra and Sharma [17] for the sake of completeness only):

P(Rt = 1
∣∣∣Rt−1 = i, Xt =

P(Rt = 1, Rt−1 = i, Xt)
P(Rt−1 = i, Xt)

=
f (XtRt=1, Rt−1=i)×P(Rt=1, Rt−1=i)

f (XtRt−1=i)×P(Rt−1=i)

=
P(Rt=1, Rt−1=i)

P(Rt−1=i) ×
f (XtRt=1, Rt−1=i)

f (XtRt−1=i)

=
P(Rt=1, Rt−1=i)

P(Rt−1=i) ×
f (XtRt=1, Rt−1=i)

[ f (XtRt=1, Rt−1=i)P(Rt=1Rt−1=i)] [ f (XtRt=0, Rt−1=i)P(Rt=0Rt−1=i)]

= P1i ×
f (XtRt=1, Rt−1=i)

[ f (XtRt=1, Rt−1=i)P(Rt=1Rt−1=i)] [ f (XtRt=0, Rt−1=i)P(Rt=0Rt−1=i)] ,

(2)

where P1i is the transition probability of a first order Markov. The second term of Equation (2) is the
additional variables (Xt) in the vector Zt and can be approximated by using a mixture of multivariate
normal distribution to represent the conditional probability as expressed in Equation (3).

= P1i

1

det(V1,i)
1/2 exp

{
−

1
2 (Xt µ1,i)V−1

1,i (Xt−µi,1)
′
}

 1

det (V1,i)
1/2 exp

{
−

1
2 (Xt−µ1,i)V−1

1,i (Xt−µi,1)
′
}
p1i

+
 1

det (V0,i)
1/2 exp

{
−

1
2 (xt−µ0,i)v−1

0,i (Xt−µ0,1)
′
}
(1−p1i)


, (3)

where P1i is the transition probability of a wet day following a dry day or a wet day; µ1,i and µ0,i are
the mean vectors of Xt when Rt−1 = i and Rt = 1 and 0, respectively; V1,i and V0,i are the corresponding
variance-covariance matrix of Xt when Rt−1 = i and Rt = 1 and 0, respectively; and det() represents the
determinant operation.

2.2. Study Area and Data Collection

2.2.1. Study Area

The study area is the upper Ping river basin (UPRB) in northern Thailand. It is located between
latitude 17◦14′30” and 19◦47′52” north and between longitude 98◦4′30” and 99◦22′30” east. The UPRB
covers the area of 25,370 km2 in Chiang Mai and Lamphun provinces, which is covered mostly by
mountain ranges and forests. The average annual rainfall of the basin (1960–2007) is around 1100 mm,
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which is mostly influenced by the Southwestern monsoon in the wet season starting from May to
October (Figure 1). Since nearly 90% of rainfall occurs during the wet season, water shortage during
the dry season is normal in rain-fed areas. Runoff from the UPRB flows into Bhumipol Dam, which has
an active storage capacity of 9.7 × 109 m3. The water supply is mainly used for rice production in the
lower Chao Phraya Basin and delivering water to Bangkok, the capital city of Thailand. The impacts of
climate change on rainfall regimes will have a direct influence on reservoir inflows.
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2.2.2. Rainfall Data

Daily rainfall data at 22 rainfall stations in the UPRB for 46 years from 1960 to 2005 were selected
for the application of both statistical downscaling techniques. Figure 1 shows the locations of these
rainfall stations. These stations have more than 96% complete records. Some missing data were
approximated from the data at nearby stations using the Inverse Distance Square Weighting (IDSW)
method. In generating daily rainfall occurrence, a wet day was classified as wet if daily rainfall was
greater than 0.3 mm [17].

2.2.3. Reanalysis Data

The National Centers for Environmental Prediction/National Center for Atmospheric Research
(NCEP/NCAR) provide large-scale historical atmospheric variables (predictors) known as NCEP/NCAR
reanalysis data [32]. The reanalysis data have a spatial resolution of 2.5◦ latitude by 2.5◦ longitude and
a temporal coverage of four times daily, daily and monthly values starting from 1948. Daily time series
of twenty-six climate variables at four grids covering the UPRB were downloaded from the website
(https://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml) for use as potential predictors in the
downscaling approaches.

2.2.4. General Circulation Model (GCM) Data

The daily output of a representative GCM, MPI-ESM-LR model (by Max Planck Institute for
Meteorology (MPI-M), Germany) available under the Coupled Model Intercomparison Project 5
(CMIP5) was used in the study. The model has a horizontal grid resolution of 1.875◦ by 1.875◦.
The GCM output at four grid points covering and surrounding the UPRB is downloaded from the
website http://esgf-data.dkrz.de/esgf-web-fe/ for the baseline (1960–2005) time period.

2.3. Model and Predictor Sets

2.3.1. Predictor Selection

The selected 26 potential atmospheric (ATM) variables from NCEP/NCAR reanalysis data at
4 selected grids are interpolated at 22 rainfall stations using IDSW approach. Significant atmospheric
predictors at each rain gauge station are identified using a stepwise multiple linear regression which has
been successfully used for selecting ATM variables for rainfall downscaling [2,21]. Following Mehrotra
et al. [21], atmospheric predictors which showed high correlations (>0.85) amongst themselves were
dropped, resulting in the optimal parameter set, which includes the four key atmospheric variables.
These variables consisting of hgt700 (geopotential height at the pressure level 700 hPa), uwnd700
(eastward wind at the pressure level 700 hPa), vwnd850 (northward wind at the pressure level 850 hPa)
and ome850 (omega at the pressure level 850 hPa) were selected as a set of predictors to be further
used to establish different models in simulating daily rainfall occurrence at each station.

2.3.2. Wetness State Indicators (WIs)

A variable representing “how wet it has been over a period of time in the past” is defined as
“wetness-state indicator (WI)”, i.e., the ratio of the number of wet days to total number of days in
a fixed time period in the recent past. WI was successfully used by Mehrotra and Sharma [16] to
represent the low frequency variability (seasonal, annual and inter-annual) in daily rainfall occurrences.
Following Mehrotra and Sharma [16], we decided to include combinations of previous 30, 90 and
365 days WIs as extra predictors in our downscaling model. The usefulness of WIs was investigated by
forming set of predictors with and without WIs and atmospheric variables, running the downscaling
models and comparing the results.

https://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml
http://esgf-data.dkrz.de/esgf-web-fe/
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2.3.3. Single Site and Multisite Cases

Downscaling of rainfall occurrence and amount is usually carried out at a single station separately.
However, rainfall of stations located in the same catchment can show strong dependence and can
influence the simulated catchment response. To study this aspect, we applied both single and multisite
downscaling approaches in the study. The multisite downscaling approach was an extension of
the single site wherein serially independent and spatially correlated random numbers at several
locations were used to maintain the spatial dependence in the daily rainfall simulations at 22 stations.
For single site simulation, the probability of a wet day was compared to a uniformly distributed
random number [0,1]. A wet day was generated if the random number was greater or equal to the wet
day probability. In the multisite simulation procedure, the uniformly distributed random numbers
were first generated for each site together. These were then modified such that they were spatially
dependent yet serially independent. These modified random numbers were next compared against
the wet day probability at individual station to simulate a wet or dry day reflecting the observed
spatial dependence in the simulations. The results of both single and multisite downscaling models
were compared. More details on the procedure are available in the works of Wilks [18], Mehrotra and
Sharma [16] and Mehrotra et al. [19].

2.3.4. Downscaling Models

As described in the previous section, 8 sets of predictors were formed using combinations
of ATM and WIs (ATM, ATM-WI30, ATM-WI90, ATM-WI365, ATM-WI30&90, ATM-WI30&365,
ATM-WI90&365 and ATM-WI30&90&365) and used to run the three downscaling techniques to obtain
24 sets of rainfall simulations at 22 stations using single site models. Similarly, 24 sets of additional
simulations were obtained by employing the same 8 predictor sets with 3 multisite models.

2.3.5. Bias Correction

Since the statistical characteristics of the raw historical GCM data differ from the reanalysis
data, bias correction of GCM outputs is essential. Multiplicative factors, change factors, delta change
approach and quantile mapping are a few examples of simple approaches often used to bias correct the
raw GCM output and also as downscaling add on [29,33–36]. These approaches have some limitations
as well, for example, adopting observed distribution and capturing average statistics of historical
time series without focusing on the extremes [37–39]. More comprehensive multi-dimensional bias
correction approaches considering time, space and across variables biases are also available [40–46].

In this study, nested bias correction (NBC) proposed by Johnson and Sharma [40] was applied to
reduce the differences across GCM and historical statistics. The NBC corrects for biases at multiple
time scales and reproduces the observed low frequency variability in the bias corrected time series and
provides a better reproduction of observed behavior of variables than other simpler approaches [47].

The NBC was carried out by removing mean, standard deviation and lag 1 autocorrelation from
the GCM outputs and substituting with those of reanalysis data at daily, monthly and annual timescales.
Essentially, starting from the daily time scale, the raw GCM data were first standardized by removing
series means, standard deviations (Equation (4)) and thereafter correction for lag 1 autocorrelations
(Equation (5)) was applied to this standardized time series. Means and standard deviations of reanalysis
data were added back to create the bias corrected time series at that time scale (Equation (6)).

x′i =
xi − µmod,i

σmod,i
, (4)

x′′i = ρobs,i × x′′′i−1 +
√

1− ρ2
obs,i

x′i − ρmod,ix′i−1√
1− ρ2

mod,i

, (5)
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x′′′i = x′′i × σobs,i + µobs,i, (6)

The bias corrected daily values (x′′′i ) were aggregated to form monthly time series (y′′′m ) and the
same bias correction procedure was applied. The bias corrected monthly time series was aggregated to
annual time scale (z′′′n ) and the correction procedure was repeated. The corrections at monthly and
annual time scales were incorporated at the daily time scale by modifying the daily bias corrected time
series using the factors as specified in Equation (7). In this equation, t stands for day, m for month and n
for year. The combined weighting factor is the ratio of the monthly corrected GCM to the raw GCM for
month m, multiplied by the ratio of the annual corrected GCM to the aggregated raw GCM for year n.

x̂t =

(
y′′′m

ym

)(
z′′′n
zn

)
x′′′t , (7)

More details on the NBC are available in the work of Johnson and Sharma [40].

3. Results and Discussion

3.1. Model Calibration and Validation

All three downscaling techniques were calibrated using observed rainfall and reanalysis data for
the time period 1960–2005 and validated using bias corrected historical GCM data for the time period
1960–2005 (46 years). The results of each model and data case are described and discussed for both
calibration and validation periods in terms of reproduction of important statistics of interest to water
resource managers.

3.2. Comparison of Statistics

As stochastic models produce random outputs, there is always some uncertainty on how
representative the generated data are if only one simulation (realization) is used in the analysis. Thus,
we simulated 100 realizations of 46 years of daily rainfall occurrences at 22 rainfall stations for all
48 model and data combination cases to capture the essential statistical characteristics of the climate
incorporating model structure and parameter uncertainty. The performance of these cases was analyzed
in terms of reproduction of statistics at daily, monthly, seasonal and annual time scales. These include
means, standard deviations and auto correlations of number of wet days and wet and dry spells of
different durations. Root mean square error (RMSE) is a popular error metric for general numerical
prediction purposes [48]. However, unlike relative RMSE (Rel. RMSE), the RMSE is not normalized by
the mean value, which makes it rather unsuitable for assessing errors for a variable whose observations
can vary by several orders of magnitude. Thus, Rel. RMSE was selected to indicate overall model
performance. This indicator is calculated by dividing root mean square error with average value of
measured data. Model accuracy is considered excellent when Rel. RMSE < 10% (indicated in blue
highlight), good if 10% < Rel. RMSE < 20% (indicated in green highlight), fair if 20% < Rel. RMSE
< 30% (indicated in yellow highlight), poor if 30% < Rel. RMSE < 40% (indicated in orange highlight)
and very poor if Rel. RMSE > 40% (indicated in grey highlight). Spatial dependence across stations
was analyzed in terms of cross correlation of monthly and annual wet days. These results are explained
and discussed next.

3.3. Preliminary Screening of Model and Data Combination Cases

Owing to many model and dataset combination cases, a preliminary analysis was conducted to
select the best performing datasets for the detailed analysis. This analysis was primarily focused on the
differences in the reproduction of means, standard deviations and wet and dry spells by these cases as
defined by Rel. RMSE.

Table 1 presents the Rel. RMSE of all the 48 cases for the calibration time period while scatter
plots of means and standard deviations (SDs) of observed and models simulated annual wet days
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are presented in Figure 2. Mean is reproduced well by all models (Column 1, Figure 2), although
Rel. RMSE of mean is minimum for RegressionYrly model with ATM as predictors (Table 1). SD at
monthly and annual time scale is the best reproduced by multisite MMM with ATM and WI30&365 as
predictors (Columns 2 and 4, Figure 2). Similarly, number of wet and dry spells is better reproduced
by MMM with ATM and WI30, whereas cross correlations are better reproduced by multisite MMM
with ATM and WI30&365 as predictors. All models, in general, perform well during calibration period
as they were fitted and tested using the same dataset. It is the validation period that really tests
the performance of a model. Table 2 presents the Rel. RMSE for the annual, monthly and seasonal
time periods simulated by three downscaling techniques for the validation (using historical GCM
data) time period. Scatter plots of means and SD are presented in Figure 3. Daily mean is simulated
well by both regression models, whereas monthly mean is simulated well by R366 models (Column
1, Figure 3). Statistics related to the monthly and annual standard deviations are better simulated
by multisite MMM with ATM and WI30&90&365 predictor variables (Last column and bottom two
rows of Figure 3). Number of dry and wet spells is better simulated by MMM with ATM only and
ATM-WI90&365 variables. Cross correlations are better simulated by regression R366 model with ATM
at annual time scale while by RYrly model with ATM-WI30&365 at monthly time scale.

Table 1. Relative root mean square error (Rel. RMSE) of basic statistics for calibration time period.

Model Cases
Single Site Multisite Single Site Multisite

Ryrly 1 R366 2 MMM Ryrly 1 R366 2 MMM Ryrly 1 R366 2 MMM Ryrly 1 R366 2 MMM

Annual mean Annual standard deviation
ATM 0.14 0.28 1.68 0.45 0.33 1.46 48.88 57.59 41.40 48.89 57.44 41.63

ATM-WI30 0.15 0.24 1.98 0.47 0.17 1.82 35.57 50.91 33.26 35.33 50.98 33.20
ATM-WI30&90 0.16 0.23 1.85 0.39 0.17 1.67 36.69 50.48 12.13 36.73 50.51 12.15

ATM-WI30&365 0.16 0.24 1.93 0.40 0.17 1.75 43.73 51.27 11.42 43.78 51.31 11.23
ATM-WI30&90&365 0.16 0.23 1.66 0.49 0.18 1.52 43.99 50.92 23.89 43.76 50.99 23.69

ATM-WI90 0.15 0.28 2.22 0.42 0.17 1.95 40.98 50.58 25.87 41.00 50.59 25.41
ATM-WI90&365 0.16 0.28 1.98 0.49 0.18 1.74 45.75 51.22 12.58 45.41 51.26 12.61

ATM-WI365 0.14 0.23 2.10 0.52 0.19 1.84 48.18 52.87 22.50 48.20 52.86 22.01
Monthly mean Monthly standard deviation

ATM 13.25 3.17 3.49 13.74 3.30 3.51 36.54 39.70 20.59 36.59 39.71 20.39
ATM-WI30 12.20 3.16 3.83 12.46 3.21 3.89 28.51 35.94 17.07 28.63 35.89 16.85

ATM-WI30&90 11.49 3.20 3.99 11.85 3.25 3.99 27.96 35.88 11.76 28.04 35.83 11.68
ATM-WI30&365 12.14 3.16 3.86 12.46 3.21 3.88 29.59 35.95 12.33 29.64 35.90 12.09

ATM-WI30&90&365 11.52 3.22 4.06 11.79 3.27 4.07 29.07 35.90 14.72 29.18 35.82 14.66
ATM-WI90 14.23 3.33 3.94 14.57 3.38 3.92 34.53 37.30 16.04 34.60 37.28 15.98

ATM-WI90&365 14.33 3.36 3.88 14.59 3.41 3.88 35.28 37.27 12.52 35.36 37.22 12.31
ATM-WI365 13.26 3.19 3.81 13.81 3.24 3.81 36.42 38.69 16.48 36.43 38.64 16.42

Number of dry spells Number of wet spells
ATM 52.72 25.36 7.38 54.75 26.69 6.64 38.01 33.24 9.37 38.30 33.25 10.33

ATM-WI30 42.57 23.90 5.97 44.84 25.26 6.98 35.37 32.95 10.06 35.56 33.01 10.26
ATM-WI30&90 42.51 23.82 4.96 44.67 25.19 6.00 35.42 32.93 10.73 35.71 32.99 10.85

ATM-WI30&365 41.60 23.88 5.62 43.71 25.24 6.64 35.21 32.95 10.09 35.50 33.01 10.33
ATM-WI30&90&365 41.53 23.84 4.99 43.72 25.20 6.06 35.26 32.93 11.16 35.44 32.99 11.22

ATM-WI90 48.70 24.51 5.73 50.62 25.93 6.89 36.92 33.15 9.57 37.21 33.21 9.88
ATM-WI90&365 48.50 24.51 5.51 50.55 25.92 6.65 36.87 33.14 9.78 37.06 33.20 10.07

ATM-WI365 52.72 25.15 6.66 55.05 26.55 7.75 38.01 33.23 9.43 38.21 33.29 9.74
Cross correlation of annual wet days Cross correlation of monthly wet days

ATM 100.88 134.14 112.90 138.28 117.54 159.94 90.22 101.61 83.63 37.28 45.93 42.38
ATM-WI30 67.65 104.09 97.66 88.49 89.70 128.53 78.54 92.73 78.58 34.97 42.68 42.68

ATM-WI30&90 68.98 101.02 63.54 86.43 89.24 77.07 77.48 92.74 73.73 34.28 42.87 42.82
ATM-WI30&365 91.93 105.99 68.02 119.41 90.98 75.20 79.19 92.66 77.81 35.96 42.72 44.13

ATM-WI30&90&365 91.51 103.56 46.07 121.30 91.66 46.88 78.27 92.74 74.81 35.71 42.86 46.27
ATM-WI90 82.30 101.60 86.26 111.45 90.40 111.26 87.81 97.84 82.42 37.18 45.05 44.84

ATM-WI90&365 96.18 105.06 59.47 131.64 92.17 63.66 89.11 97.63 82.74 38.33 44.94 47.13
ATM-WI365 98.17 112.60 87.27 130.88 93.79 105.43 90.46 100.74 84.68 37.53 45.76 45.16

1 RYrly, RegressionYrly; 2 R366, Regression366.
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Figure 2. Scatter plots of means and standard deviations of observed and simulated annual wet days 
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Figure 2. Scatter plots of means and standard deviations of observed and simulated annual wet days
at each rainfall station for calibration: (a) means using single site simulations; (b) standard deviations
using single site simulations; (c) means using multisite simulations; and (d) standard deviations using
multisite simulations. Each dot on the plot represents a station. Black hollow circles are for MMM,
blue crosses are for RegressionYrly and red triangles are for Regression366 models.
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Figure 3. Scatter plots of means and standard deviations of observed and simulated annual wet days
at each rainfall station for validation: (a) means using single site simulations; (b) standard deviations
using single site simulations; (c) means using multisite simulations; and (d) standard deviations using
multisite simulations. Each dot on the plot represents a station. Black hollow circles are for MMM,
blue crosses are for RegressionYrly and red triangles are for Regression366 models.
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Table 2. Relative root mean square error (Rel. RMSE) of basic statistics for validation time period.

Model Cases
Single Site Multisite Single Site Multisite

Ryrly R366 MMM Ryrly R366 MMM Ryrly R366 MMM Ryrly R366 MMM

Annual mean Annual standard deviation
ATM 3.48 0.97 4.85 4.19 0.81 4.62 43.24 55.24 44.73 42.91 54.96 44.24

ATM-WI30 3.11 1.08 6.71 3.75 0.94 6.51 42.80 54.73 41.60 42.79 54.34 41.40
ATM-WI30&90 3.04 1.04 8.58 3.70 0.92 8.41 43.66 54.43 31.44 43.34 54.12 31.50
ATM-WI30&365 2.61 1.10 10.11 3.23 0.97 9.92 43.48 54.49 33.39 43.32 54.36 33.19

ATM-WI30&90&365 2.61 1.05 11.66 3.22 0.93 11.45 44.09 54.28 22.91 43.66 54.12 22.90
ATM-WI90 3.31 1.03 7.42 4.00 0.91 7.27 42.36 54.40 38.28 42.38 53.85 37.90

ATM-WI90&365 3.03 1.02 10.75 3.72 0.92 10.56 43.02 54.43 28.88 42.61 53.94 28.79
ATM-WI365 3.61 1.20 8.73 4.30 1.04 8.52 42.79 54.70 38.11 42.51 54.24 37.94

Monthly mean Monthly standard deviation
ATM 19.97 4.76 12.62 20.80 4.84 12.70 28.36 34.43 21.31 28.74 34.31 21.25

ATM-WI30 20.62 5.36 14.58 21.43 5.48 14.61 29.37 34.38 20.86 29.87 34.25 20.89
ATM-WI30&90 20.61 5.38 16.66 21.39 5.53 16.71 29.34 34.33 19.12 29.82 34.28 19.24
ATM-WI30&365 20.55 5.46 16.80 21.29 5.53 16.83 29.34 34.25 19.87 29.83 34.19 19.87

ATM-WI30&90&365 20.46 5.46 18.70 21.26 5.54 18.74 29.34 34.46 17.87 29.80 34.19 17.94
ATM-WI90 20.46 5.04 14.49 21.23 5.17 14.58 28.63 34.50 20.85 29.16 34.28 20.83

ATM-WI90&365 20.47 5.06 16.87 21.18 5.19 16.85 28.67 34.33 19.22 29.10 34.20 19.28
ATM-WI365 20.05 4.87 14.82 20.88 4.95 14.85 28.23 34.39 21.03 28.78 34.30 21.01

Number of dry spells Number of wet spells
ATM 54.63 19.37 10.76 56.76 20.51 11.28 30.51 27.30 17.62 31.24 27.30 17.88

ATM-WI30 57.45 20.66 9.92 59.62 21.98 10.26 32.47 28.82 19.60 33.13 28.89 19.76
ATM-WI30&90 58.02 20.69 8.97 59.95 21.94 9.13 32.77 28.91 21.29 33.32 28.95 21.37
ATM-WI30&365 57.01 20.68 8.74 58.98 21.93 8.99 32.54 28.85 21.59 33.09 28.92 21.73

ATM-WI30&90&365 57.38 20.58 9.07 59.33 21.83 9.16 32.83 28.92 23.27 33.37 28.96 23.30
ATM-WI90 54.30 19.58 8.63 56.55 20.82 8.85 30.58 28.09 19.18 31.35 28.11 19.27

ATM-WI90&365 71.21 19.53 8.34 72.69 20.70 8.40 39.81 28.14 21.16 40.19 28.15 21.25
ATM-WI365 54.75 19.16 9.01 56.99 20.41 9.39 30.52 27.67 19.40 31.35 27.69 19.57

Cross correlation of annual wet days Cross correlation of monthly wet days
ATM 126.44 147.79 116.92 140.33 122.12 135.54 103.78 107.85 83.91 42.02 48.65 44.07

ATM-WI30 116.16 139.58 111.69 141.74 124.51 142.70 96.57 105.61 81.67 41.84 48.59 45.31
ATM-WI30&90 118.31 139.08 115.73 140.67 124.51 147.31 96.27 105.47 79.34 42.24 48.80 46.58
ATM-WI30&365 117.53 140.35 120.36 152.29 124.28 149.24 102.40 105.44 81.49 39.15 48.68 47.39

ATM-WI30&90&365 115.70 138.39 123.81 144.51 124.31 148.60 95.07 105.28 79.74 41.64 48.82 49.13
ATM-WI90 120.18 139.71 110.51 145.96 124.10 143.18 101.52 106.87 84.51 41.64 48.95 46.26

ATM-WI90&365 124.76 140.24 120.60 143.44 123.83 147.70 103.74 106.51 83.90 40.90 49.09 48.58
ATM-WI365 126.44 140.77 117.90 141.82 124.94 147.37 103.54 107.49 86.02 42.31 48.60 47.13

Following these results and keeping in mind that downscaled results of this exercise will be used in
a climate change study, all subsequent analysis is based on the presentation and discussion of detailed
calibration and validation results of the multisite downscaling models with ATM, ATM-WI30&90 and
ATM-WI30&365 datasets as predictors.

3.4. Number of Wet Days

Means and SDs of observed and models simulated monthly, seasonal and annual number of wet
days using three selected predictor sets are presented in Table 3 for both calibration and validation
periods. The table also shows Rel. RMSE in brackets. Similarly, scatter plots of these statistics are
presented in Figures 4 and 5 for both calibration and validation periods.

All downscaling techniques closely reproduce the observed wet day totals at monthly and
annual time scales Column 3, Figures 2 and 3) for calibration and validation periods with regression
models performing better than MMM. On seasonal basis, overall MMM performs better in comparison
to regression models irrespective of datasets and time periods. In general, all models struggle in
reproducing seasonal standard deviation during validation, although MMM better simulates seasonal
SDs during validation (Figures 4 and 5). The inclusion of WI predictors in the predictor set helps in
reproducing the observed aggregated time scales statistics in the downscaled sequences. Although not
so obvious, inclusion of 365 days WI predictor helps further improve the representation of observed
annual SDs in the downscaled simulations (Table 3).
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ATM-WI365 126.44 140.77 117.90 141.82 124.94 147.37 103.54 107.49 86.02 42.31 48.60 47.13 

Following these results and keeping in mind that downscaled results of this exercise will be 
used in a climate change study, all subsequent analysis is based on the presentation and discussion 
of detailed calibration and validation results of the multisite downscaling models with ATM, 
ATM-WI30&90 and ATM-WI30&365 datasets as predictors. 

3.4. Number of Wet Days 

Means and SDs of observed and models simulated monthly, seasonal and annual number of 
wet days using three selected predictor sets are presented in Table 3 for both calibration and 
validation periods. The table also shows Rel. RMSE in brackets. Similarly, scatter plots of these 
statistics are presented in Figures 4 and 5 for both calibration and validation periods. 
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Figure 4. Multisite model results simulated by all downscaling techniques for calibration: (a) using
ATM as predictors; (b) using ATM-WI30&90 as predictors; and (c) using ATM-WI30&365 as predictors.
Each dot on the plot represents a station. Black hollow circles are for MMM, blue crosses are for
RegressionYrly and red triangles are for Regression366 models.
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Table 3. Statistics of monthly, seasonal and annual wet days simulated by 3 multisite downscaling 
techniques for calibration and validation periods. Rel. RMSE is presented in brackets. 

Statistics Observed Calibration Validation 
 Data RYrly R366 MMM RYrly R366 MMM 

Annual wet days        
Mean 89.60       
ATM  89.92 (0.45) 89.71 (0.33) 88.41 (1.46) 93.23 (4.19) 89.92 (0.81) 86.62 (4.62) 

ATM-WI30&90  89.88 (0.39) 89.63 (0.17) 88.38 (1.67) 92.68 (3.70) 89.31 (0.92) 83.67 (8.41) 
ATM-WI30&365  89.89 (0.40) 89.60 (0.17) 88.25 (1.75) 92.27 (3.23) 89.25 (0.97) 82.07 (9.92) 

Standard deviation 16.89       
ATM  9.03 (48.89) 7.57 (57.44) 10.39 (41.63) 10.19 (42.91) 8.04 (54.96) 9.88 (44.24) 

ATM-WI30&90  11.02 (36.73) 8.70 (50.51) 15.38 (12.15) 10.10 (43.34) 8.20 (54.12) 12.11 (31.50) 
ATM-WI30&365  9.88 (43.78) 8.56 (51.31) 15.92 (11.23) 10.10 (43.32) 8.15 (54.36) 11.77 (33.19) 

Monthly wet days        
Mean 7.47       
ATM  7.49 (13.74) 7.48 (3.30) 7.37 (3.51) 7.77 (20.80) 7.44 (4.84) 7.22 (12.70) 

ATM-WI30&90  7.49 (11.85) 7.47 (3.25) 7.36 (3.99) 7.72 (21.39) 7.44 (5.53) 6.97 (16.71) 
ATM-WI30&365  7.49 (12.46) 7.47 (3.21) 7.35 (3.88) 7.69 (21.29) 7.44 (5.53) 6.84 (16.83) 

Standard deviation 3.01       
ATM  2.20 (36.59) 1.98 (39.71) 2.57 (20.39) 2.74 (28.74) 2.15 (34.31) 2.59 (21.25) 

ATM-WI30&90  2.40 (28.04) 2.09 (35.83) 2.93 (11.68) 2.70 (29.82) 2.16 (34.19) 2.70 (19.24) 
ATM-WI30&365  2.36 (29.64) 2.08 (35.90) 2.87 (12.09) 2.68 (29.83) 2.16 (34.19) 2.63 (19.87) 

Wet days in dry season       
Mean 11.40       
ATM  17.08 (50.22) 12.35 (8.63) 11.77 (4.05) 21.12 (86.27) 12.57 (10.54) 12.96 (15.94) 

ATM-WI30&90  15.30 (34.46) 12.28 (7.93) 11.54 (3.28) 20.92 (84.57) 12.80 (12.54) 11.98 (10.63) 
ATM-WI30&365  15.13 (32.97) 12.27 (7.91) 11.56 (3.41) 20.67 (82.31) 12.78 (12.44) 11.84 (10.48) 

Standard deviation 5.52       
ATM  4.34 (26.64) 3.36 (42.18) 5.29 (7.75) 5.82 (16.33) 3.74 (35.90) 4.76 (20.39) 

ATM-WI30&90  4.68 (19.73) 3.75 (34.47) 5.43 (6.74) 5.69 (16.26) 3.84 (34.24) 5.37 (14.75) 
ATM-WI30&365  4.53 (22.51) 3.71 (35.34) 5.29 (7.75) 5.70 (16.55) 3.80 (34.74) 5.05 (17.05) 

Wet days in wet season       
Mean 78.20       
ATM  72.84 (6.89) 77.35 (1.12) 76.69 (2.09) 72.11 (7.88) 76.75 (2.00) 73.67 (6.67) 

ATM-WI30&90  74.58 (4.65) 77.35 (1.10) 76.84 (1.98) 71.77 (8.35) 76.52 (2.33) 71.69 (9.72) 
ATM-WI30&365  74.76 (4.42) 77.32 (1.13) 76.69 (2.09) 71.60 (8.56) 76.47 (2.40) 70.23 (11.35) 

Standard deviation 13.82       
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Figure 5. Multisite model results simulated by all downscaling techniques for validation: (a) using
ATM as predictors; (b) using ATM-WI30&90 as predictors; and (c) using ATM-WI30&365 as predictors.
Each dot on the plot represents a station. Black hollow circles are for MMM, blue crosses are for
RegressionYrly and red triangles are for Regression366 models.

3.5. Number of Wet and Dry Spells

Sustained wet and dry periods are of prime concern in catchment management studies. Table 4
presents the station averaged results of observed and models simulated dry and wet spells of varying
durations produced by three downscaling techniques for both calibration and validation time periods
using a selected dataset (ATM-WI30&365). As mentioned above, a day is classified as wet if daily
rainfall is greater than or equal to 0.3 mm, thus a wet spell is defined as the continuous sequence of
days with daily rainfall greater than or equal to 0.3 mm. Similarly, a dry spell is defined as the sequence
of days with daily rainfall less than 0.3 mm. At site statistics in the form of scatter plots are presented



Hydrology 2020, 7, 63 15 of 26

in Figure 6 for both calibration and validation time periods and for three datasets. MMM provides the
most accurate simulation of these statistics for all datasets and for both calibration and validation time
periods by having accurate fit and minimum Rel. RMSE (Figure 6 and Table 4). Models, in general,
overestimate the number of dry spells of 2–9 and 10–18 days while underestimate the number of dry
spells of >18 days (Figure 6). It appears that the inclusion of 30 days WI helps maintaining wet and
dry spells related characteristics in the downscaled sequences in a better way. The extreme wet and
dry spells (>7 days and >18 days, respectively) are intrinsically rare events (on average, occurring
once in every two seasons) and improved performance of MMM is an indication of the capability of
model for use in water resources related applications.

Table 3. Statistics of monthly, seasonal and annual wet days simulated by 3 multisite downscaling
techniques for calibration and validation periods. Rel. RMSE is presented in brackets.

Statistics
Observed Calibration Validation

Data RYrly R366 MMM RYrly R366 MMM

Annual wet days
Mean 89.60
ATM 89.92 (0.45) 89.71 (0.33) 88.41 (1.46) 93.23 (4.19) 89.92 (0.81) 86.62 (4.62)

ATM-WI30&90 89.88 (0.39) 89.63 (0.17) 88.38 (1.67) 92.68 (3.70) 89.31 (0.92) 83.67 (8.41)
ATM-WI30&365 89.89 (0.40) 89.60 (0.17) 88.25 (1.75) 92.27 (3.23) 89.25 (0.97) 82.07 (9.92)

Standard deviation 16.89
ATM 9.03 (48.89) 7.57 (57.44) 10.39 (41.63) 10.19 (42.91) 8.04 (54.96) 9.88 (44.24)

ATM-WI30&90 11.02 (36.73) 8.70 (50.51) 15.38 (12.15) 10.10 (43.34) 8.20 (54.12) 12.11 (31.50)
ATM-WI30&365 9.88 (43.78) 8.56 (51.31) 15.92 (11.23) 10.10 (43.32) 8.15 (54.36) 11.77 (33.19)

Monthly wet days
Mean 7.47
ATM 7.49 (13.74) 7.48 (3.30) 7.37 (3.51) 7.77 (20.80) 7.44 (4.84) 7.22 (12.70)

ATM-WI30&90 7.49 (11.85) 7.47 (3.25) 7.36 (3.99) 7.72 (21.39) 7.44 (5.53) 6.97 (16.71)
ATM-WI30&365 7.49 (12.46) 7.47 (3.21) 7.35 (3.88) 7.69 (21.29) 7.44 (5.53) 6.84 (16.83)

Standard deviation 3.01
ATM 2.20 (36.59) 1.98 (39.71) 2.57 (20.39) 2.74 (28.74) 2.15 (34.31) 2.59 (21.25)

ATM-WI30&90 2.40 (28.04) 2.09 (35.83) 2.93 (11.68) 2.70 (29.82) 2.16 (34.19) 2.70 (19.24)
ATM-WI30&365 2.36 (29.64) 2.08 (35.90) 2.87 (12.09) 2.68 (29.83) 2.16 (34.19) 2.63 (19.87)

Wet days in dry season
Mean 11.40
ATM 17.08 (50.22) 12.35 (8.63) 11.77 (4.05) 21.12 (86.27) 12.57 (10.54) 12.96 (15.94)

ATM-WI30&90 15.30 (34.46) 12.28 (7.93) 11.54 (3.28) 20.92 (84.57) 12.80 (12.54) 11.98 (10.63)
ATM-WI30&365 15.13 (32.97) 12.27 (7.91) 11.56 (3.41) 20.67 (82.31) 12.78 (12.44) 11.84 (10.48)

Standard deviation 5.52
ATM 4.34 (26.64) 3.36 (42.18) 5.29 (7.75) 5.82 (16.33) 3.74 (35.90) 4.76 (20.39)

ATM-WI30&90 4.68 (19.73) 3.75 (34.47) 5.43 (6.74) 5.69 (16.26) 3.84 (34.24) 5.37 (14.75)
ATM-WI30&365 4.53 (22.51) 3.71 (35.34) 5.29 (7.75) 5.70 (16.55) 3.80 (34.74) 5.05 (17.05)

Wet days in wet season
Mean 78.20
ATM 72.84 (6.89) 77.35 (1.12) 76.69 (2.09) 72.11 (7.88) 76.75 (2.00) 73.67 (6.67)

ATM-WI30&90 74.58 (4.65) 77.35 (1.10) 76.84 (1.98) 71.77 (8.35) 76.52 (2.33) 71.69 (9.72)
ATM-WI30&365 74.76 (4.42) 77.32 (1.13) 76.69 (2.09) 71.60 (8.56) 76.47 (2.40) 70.23 (11.35)

Standard deviation 13.82
ATM 7.28 (49.48) 6.68 (53.97) 13.37 (9.98) 8.04 (44.83) 7.06 (51.47) 8.49 (41.64)

ATM-WI30&90 9.07 (36.30) 7.39 (48.73) 12.98 (10.20) 7.36 (45.32) 7.17 (51.16) 9.93 (30.98)
ATM-WI30&365 8.45 (40.91) 7.34 (49.00) 13.37 (9.98) 7.95 (45.39) 7.11 (51.20) 9.80 (31.87)

Table 4. Average number of dry and wet spells in a year. Relative root mean square error (Rel. RMSE)
is presented in brackets (Model case: ATM-WI30&365).

Statistics
Observed Calibration Validation

Data RYrly R366 MMM RYrly R366 MMM

Dry spells
No. of dry spells of 2-9 days 23.87 32.98 (38.33) 31.02 (30.21) 25.56 (7.27) 35.52 (40.78) 30.34 (27.30) 26.22 (10.57)

No. of dry spells of 10-18 days 3.52 4.42 (26.48) 3.68 (7.89) 3.70 (6.81) 5.24 (50.02) 3.75 (9.27) 3.94 (14.25)
No. of dry spells of >18 days 4.49 2.83 (37.06) 3.47 (22.87) 4.23 (6.03) 2.23 (50.69) 3.54 (21.30) 4.22 (6.71)

Wet spells
No. of wet spells of 2-4 days 15.90 16.95 (14.27) 17.25 (14.63) 16.53 (5.68) 18.89 (21.75) 18.04 (17.23) 16.25 (8.03)
No. of wet spells of 5-7 days 2.91 1.58 (47.87) 1.69 (44.21) 2.75 (12.78) 2.00 (34.10) 1.90 (37.40) 2.34 (24.81)
No. of wet spells of >7 days 1.15 0.31 (82.91) 0.33 (80.69) 0.90 (25.47) 0.41 (72.44) 0.38 (75.93) 0.60 (56.46)
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Figure 6. Number of dry and wet spells in a year at each of 22 rainfall stations for calibration and
validation periods using the multisite downscaling model: (a) using ATM as predictors; (b) using
ATM-WI30&90 as predictors; and (c) using ATM-WI30&365 as predictors. Dots on the plots
represent stations. Black dots are for MMM, blue dots are for RegressionYrly and red dots are
for Regression366 models.

3.6. Spatial Dependence of Rainfall Occurrence

Accurate reproduction of the spatial dependence of rainfall events is needed for correct simulation
of catchment response over a large area. The spatial dependence in the downscaled sequences is
introduced by making use of spatially dependent and serially independent random innovations.
It would also be of interest to see the additional role of ATM and WI predictors on the rainfall spatial
dependence. The role of ATM is more interesting as this predictor set is common across all the stations.
As discussed above, the ATM, ATM-WI30&90 and ATM-WI30&365 predictor sets were found to be the
top three performers in reproducing the overall rainfall occurrence statistics. Therefore, they were
chosen as the final set of predictors to compare the performance of the three downscaling techniques.
Since we were dealing with the reproduction of spatial dependence by the downscaling models, results
of both single and multisite cases were considered. Figures 7 and 8 present scatter plots of observed
and simulated cross correlation of daily, monthly and annual wet days for each station pair provided by
three downscaling techniques using ATM, ATM-WI30&90 and ATM-WI30&365 predictors, for single
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site and multisite cases, respectively, during calibration time period. All single site models with all
sets of predictors appear to be only marginally improving the spatial dependence (top three rows,
Figure 7). This is expected as a single site model simulates rainfall at individual location in isolation
and completely ignores the spatial dependence. However, the reproduction of spatial dependence
improves with time aggregation and WI predictors as these variables tend to impart a weak spatial
coherence in the rainfall simulation. At annual time scale, single site MMM with ATM-WI30&365
predictor set performs well. It appears that ATM and low frequency variability predictors which do not
vary greatly in space are able to reproduce a part of observed spatial dependence in the downscaled
simulations. All multisite models, irrespective of predictor sets, seem to perform well at daily time
scale (top three rows, Figure 8). At monthly time scale, Regression366 provides slight overestimation
of this statistic. At annual time scale, MMM with ATM-WI30&365 predictor set performs better in
comparison to regression models (bottom row, Figure 8).

Hydrology 2020, 7, x FOR PEER REVIEW 17 of 26 

 

ATM-WI30&90 and ATM-WI30&365 predictors, for single site and multisite cases, respectively, 
during calibration time period. All single site models with all sets of predictors appear to be only 
marginally improving the spatial dependence (top three rows, Figure 7). This is expected as a single 
site model simulates rainfall at individual location in isolation and completely ignores the spatial 
dependence. However, the reproduction of spatial dependence improves with time aggregation and 
WI predictors as these variables tend to impart a weak spatial coherence in the rainfall simulation. 
At annual time scale, single site MMM with ATM-WI30&365 predictor set performs well. It appears 
that ATM and low frequency variability predictors which do not vary greatly in space are able to 
reproduce a part of observed spatial dependence in the downscaled simulations. All multisite 
models, irrespective of predictor sets, seem to perform well at daily time scale (top three rows, 
Figure 8). At monthly time scale, Regression366 provides slight overestimation of this statistic. At 
annual time scale, MMM with ATM-WI30&365 predictor set performs better in comparison to 
regression models (bottom row, Figure 8). 

A
TM

 (D
ai

ly
) 

   

A
TM

-W
I3

0&
90

 (D
ai

ly
) 

   

A
TM

-W
I3

0&
36

5 
(D

ai
ly

) 

   

A
TM

 (M
on

th
ly

) 

   

A
TM

-W
I3

0&
90

 (M
on

th
ly

) 

   

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Si
m

ul
at

ed

Observed

Rel.RMSE =  65.60

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Si
m

ul
at

ed

Observed

Rel.RMSE =  56.58

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Si
m

ul
at

ed

Observed

Rel.RMSE =  48.13

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Si
m

ul
at

ed

Observed

Rel.RMSE =  62.26

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Si
m

ul
at

ed

Observed

Rel.RMSE =  56.24

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Si
m

ul
at

ed

Observed

Rel.RMSE =  48.13

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Si
m

ul
at

ed

Observed

Rel.RMSE =  61.87

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Si
m

ul
at

ed

Observed

Rel.RMSE =  56.26

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Si
m

ul
at

ed

Observed

Rel.RMSE =  48.51

0.5

0.6

0.7

0.8

0.9

1.0

0.5 0.6 0.7 0.8 0.9 1.0

Si
m

ul
at

ed

Observed

Rel.RMSE =  5.38

0.5

0.6

0.7

0.8

0.9

1.0

0.5 0.6 0.7 0.8 0.9 1.0

Si
m

ul
at

ed

Observed

Rel.RMSE =  4.73

0.5

0.6

0.7

0.8

0.9

1.0

0.5 0.6 0.7 0.8 0.9 1.0

Si
m

ul
at

ed

Observed

Rel.RMSE =  4.57

0.5

0.6

0.7

0.8

0.9

1.0

0.5 0.6 0.7 0.8 0.9 1.0

Si
m

ul
at

ed

Observed

Rel.RMSE =  4.79

0.5

0.6

0.7

0.8

0.9

1.0

0.5 0.6 0.7 0.8 0.9 1.0

Si
m

ul
at

ed

Observed

Rel.RMSE =  4.19

0.5

0.6

0.7

0.8

0.9

1.0

0.5 0.6 0.7 0.8 0.9 1.0

Si
m

ul
at

ed

Observed

Rel.RMSE =  6.14

Figure 7. Cont.
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Figure 7. Scatter plots of observed and models simulated daily, monthly and annual cross correlations
using single site model (Calibration period). Rel. RMSE values are shown on the top right of each plot:
(a) using RegressionYrly model; (b) using Regression366 model; and (c) using MMM.
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Figure 8. Scatter plots of observed and models simulated daily, monthly and annual cross correlations
using multisite model (Calibration period). Rel. RMSE values are shown on the top right of each plot:
(a) using RegressionYrly model; (b) using Regression366 model; and (c) using MMM.
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Similar to the calibration case, Figures 9 and 10 present scatter plots of observed and models
simulated cross correlations of daily, monthly and annual wet days using three predictor sets, for single
site and multisite cases, respectively, for the validation time period. All single site models, irrespective
of predictor sets, perform poorly at daily and annual time scales. This is because the single site
model ignores the spatial dependence across stations in the downscaled simulations. At monthly
time scale Regression366 model with either predictor set performs better in comparison to remaining
two models (Rows 4–6, Figure 9). For multisite case, all models perform well at daily and monthly
time scale by repeating the calibration results. At annual time scale, all models with either predictor
set fail to reproduce the observed spatial dependence behavior. It appears that the univariate nested
bias correction ignores the spatial dependence and cross variable dependence aspects and use of a
multivariate bias correction approach, as described by Mehrotra and Sharma [43–45], might improve
the behavior. As annual cross correlations play a major role during the planning, design and operation
of manmade components of hydrosystems, their accurate simulation is important.
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Figure 9. Cont.
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Figure 9. Scatter plots of observed and models simulated daily, monthly and annual cross correlations
using single site model (Validation period). Rel. RMSE values are shown on the top right of each plot:
(a) using RegressionYrly model; (b) using Regression366 model; and (c) using MMM.
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Figure 10. Scatter plots of observed and models simulated daily, monthly and annual cross correlations
using multisite model (Validation period). Rel. RMSE values are shown on the top right of each plot:
(a) using RegressionYrly model; (b) using Regression366 model; and (c) using MMM.

4. Conclusions

Water resources assessments of climate change impacts at catchment scales, where most adaptation
measures are planned and implemented, are of great interest to planners and water resources
managers. This study compared the application of three approaches for downscaling precipitation
occurrence patterns at 22 rain gauge stations given wetness state indicators and atmospheric variables.
Some important conclusions of the study are as follows.

The results of validation indicate that the four selected atmospheric variables comprising hgt700,
uwnd700, vwnd850 and ome850 can represent the rainfall patterns effectively for this study region.
While the structure of Regression366 and MMM require many parameters to define the processes, results
of cross-validation show that, despite this, these models are well balanced and not overparameterized.

A thorough comparison of observed and models simulated at site and across the sites statistics at
multiple time scales suggest multisite MMM as the best downscaling model for the region. The MMM
is formulated to allow a mix of discrete and continuous predictor variables within the Markovian
model structure assumed. The wetness-state indicators as continuous variables are formed solely
from the previous wet days’ values in the downscaled sequence. The use of wetness-state indicators
as additional conditioning predictors further improves the model performance at monthly, seasonal
and annual time scales. Use of spatially correlated random innovations coupled with ATM and WI
effectively improves the reproduction of spatial dependence, more specifically during calibration,
but performs poorly during validation at annual time scale. However, to properly reproduce the
spatial and across variable dependences in atmospheric variables and downscaled results, use of
multi-dimension bias correction approaches is necessary [43–45], as spatial temporal and multi-variable
attributes are often misrepresented by climate models. We intend to use a multivariate bias correction
approach in our next stage of research. The spatial and high and low frequency temporal dependencies
of the climate variables can have significant influence on the outcome where time series of climate
variables at multiple locations are used, for example in catchment modeling. Similarly, annual cross
correlations assume importance during the planning, design and operation of man-made components
of a water resources system.

It may be noted that, while the approaches adopted have been described elsewhere,
their application to the study area is attempted for the first time. The model setup over the new area
is a unique challenging task and requires expert judgement. Similarly, identification of meaningful
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predictors is unique to each climatic region and requires knowledge of the climate processes and
governing physics.

As with any other research field, the downscaling techniques are also subjected to a few limitations
and assumptions. Statistical downscaling, e.g., regression and MMM used here, focus on the overall
model accuracy and pay less attention to physical interpretation of the climate [49]. The downscaling
techniques are developed based on our present understanding of the physical processes and the temporal
and spatial limits of these relationships are unknown. The downscaling models are used to study the
effect of changing climate on our water resources under the assumption that the downscaling model
developed and calibrated under current climate is stable and the relationship between atmospheric
variables and local climate (rainfall) will continue to hold true in the future as well. Although the
changes were found to be relatively small and atmospheric patterns may be more robust to these time
shifts [14,17], further testing is recommended. Finally, considering overall model performances and
datasets used, we recommend a multisite MMM model with four atmospheric variables and previous
30- and 365-day wetness indicators as a prospective downscaling model setup to project future rainfall
behavior over the study region.
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