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A B S T R A C T

Study region: Annual and monthly ET values from seven global remote sensing products (ALEXI,
CMRSET, ETMonitor, GLEAM V3.3b, MOD16A2, SEBS V3 and SSEBop) were validated for 172
sub-basins in Thailand.
Study focus: This study describes a generalised validation procedure that uses rainfall (P),
streamflow (Q) and storage change data (from the Gravity Recovery and Climate Experiment -
TWSCGRACE) and land use information. For each sub-basin, bulk ET was computed using the
water balance framework and compared to estimates by ET products. Inverse water balance
computations were applied to infer the storage change estimates from each product (ΔS = P – Q -
ETRS), which were compared to TWSCGRACE to assess their monthly scale performances.
New hydrological insights for the region under study: All products performed very well on the an-
nual basis (mean NSE>0.96) and satisfactorily on the monthly scale (mean NSE>0.65). Land
use classifications from the Land Development Department were used to examine the ability of
four candidates (CMRSET, MOD16A2, GLEAM V3.3b and ETMonitor) to provide ET estimates
with correspondence to physical land use conditions. By also considering product resolutions and
data accessibility, MOD16A2 was consensually shown to be the most promising product to be
used for water resources management in Thailand. In addition to local applications, the outcomes
emanate the potential for utilisation on the global scale which should be further investigated.

1. Introduction

Evapotranspiration (ET) is a major component of the hydrological cycle which generates several products and services that
support society in terms of agronomy, economy, environment, micro-climates, industry and leisure (Bastiaanssen and Chandrapala,
2003). Globally, ET generally accounts for more than half of the total annual precipitation. Detailed information on ET is required to
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express these benefits in relation to consumptive use. ET data can be used for water accounting procedures (Karimi et al., 2013;
Sriwongsitanon, 2018), to evaluate irrigation performance (Bastiaanssen et al., 1996), streamflow (Shilpakar et al., 2011), water
productivity (Zwart et al., 2010) and withdrawals (van Eekelen et al., 2015), among others. ET is affected by land use, soil moisture
availability and climate condition, which makes it highly variable across heterogeneous landscapes. Factors including leaf area index,
root depths, albedo, surface roughness and transfer of energy and momentum all contribute to the variation in ET occurrence across
different bioregions (Bonan et al., 1992). Dias et al. (2015) simulated mean annual ET using the Integrated Model of Land Surface
Processes (INLAND) for small catchments in Brazil and found that mean annual ET was 39% lower in agricultural ecosystems than in
natural ecosystems. Similarly, Costa and Foley (1997) demonstrated that forest clearing decreases annual ET by 12%.

To account for the lack of ET data from meteorological observations, numerical simulation models are often used to produce
gridded ET maps. These are produced by either spatially distributed models based on raster grids (e.g. PCR-Globwb: Sutanudjaja
et al., 2018 ; HBV: Winsemius et al., 2008) or semi-distributed models at which catchments are separated into units with similar
hydrological responses (e.g. SWAT model: Srinivasan et al., 1998; SHE model: Abbott et al., 1986; Mike Basin; FlexTopo: Savenije,
2010). Several of these models have been applied for hydrological studies in Thailand (Akter and Babel, 2012; Yasin and Clemente,
2014). The general drawback of hydrological models is the specification of soil and vegetation parameters as well as human impacts
that cannot be accurately simulated without intensive auxiliary local data.

An alternative methodology to assess the spatial variation of ET is the inclusion of earth observation data. While hundreds of ET
algorithms have been developed since the 1970s, few are more generally applied. Some reviews of determining ET from earth
observation data can be found in Courault et al. (2005); Allen et al. (2007); Kalma et al. (2008); Wang and Dickinson (2012) and
Karimi and Bastiaanssen (2015). Nowadays, global-scale ET products are becoming increasingly available further to global pre-
cipitation products. Recent studies have demonstrated the assimilation of potential evapotranspiration to improve the representation
of soil moisture, actual evapotranspiration, and streamflow (Rajib et al., 2018). With ongoing research, there are prospects for these
new-era products to be beneficial for a wide range of hydrological applications. Typical ET products whose ET layers are open to
access include MOD16A2 (Running et al., 2019), SEBS V3 (Su, 2002); and GLEAM V3.3b (Martens et al., 2017). ET products that are
not yet facilitated by operational websites include CMRSET (Guerschman et al., 2009); SSEBop (Senay et al., 2013); ALEXI (Anderson
et al., 1997) and ETMonitor (Hu and Jia, 2015). Comparison studies between various global scale ET products have been published
earlier (e.g. McCabe et al., 2015; Michel et al., 2016; Wang-Erlandsson et al., 2016; Poortinga et al., 2017; Ha et al., 2017; da Motta
Paca et al., 2019). Their general conclusions were that no ET products were deemed the most appropriate for heterogeneous
landscapes and catchments. However, as noted by Lu et al. (2009), variations amongst ET products can lead to substantially differing
estimations in annual runoff, water storage and irrigation requirements, necessitating the precautions required to select the most
appropriate ET product to be adopted for water resources management.

A key shortcoming of ET products is their validation against flux tower data. These datasets are not very accurate, such that errors
up to 20% are acceptable (Twine et al., 2000; Ramoelo et al., 2014). Advances in eddy covariance technology have led to more
reliable results, but for older systems, caution is needed in using flux towers as ground truth. Instead, given the availability of rainfall
and streamflow records in Thailand, we were able to devise a methodology to validate global ET products against the water balance,
which requires sub-basin-scale rainfall, streamflow, and terrestrial water storage change data. This method has been adopted before
in several studies such as Simons et al. (2016), who solved the water balance to evaluate ET at Son Tay gauging station in Vietnam
(catchment area ∼144,000 km2) which was compared to the estimates from MOD16A2, SSEBop, SEBS, ALEXI and CMRSET. Key
limitations of this study pertain to the use of a single runoff station and the assumption that storage change over a ten-year period was
negligible. Nevertheless, bulk ET data cannot sufficiently determine water consumption at specific locations within catchments, nor
to describe the influence of land use on the ET regime. This demonstrates importance of capturing seasonal dynamics of ET, of which
shall be explored in this study.

The objective of this study is to adopt the water balance framework to develop a validation procedure for seven global-scale ET
products based on high-quality hydrological data from 1,743 gauged rainfall stations and 172 streamflow stations across the country,
of which should help form a reliable basis. The accuracy of monthly-scale ET assessments is assessed by exploring terrestrial water
storage changes (TWSC) throughout yearly cycles. As this cannot be easily physically obtained, the Gravity Recovery and Climate
Experiment (GRACE) is used as a proxy for TWSC. Through the inversion of the water balance framework, the accuracy of each ET
product can be evaluated with respect to the GRACE-based estimate. This also provides the opportunity to test the performance of
GRACE at simulating monthly storage changes. Lastly, given the dependence of ET occurrences on land cover and soil moisture
conditions, the ET products are examined for their ability to provide realistic ET estimates with accordance to its land use type to
deduce the most suitable ET product for facilitating water management.

2. Study area and materials

2.1. Study area

The Kingdom of Thailand has a latitudinal extent of 5°37′N to 20°37′N and a longitudinal coverage of 97°22′E to 105°37′ E. The
country has a total area of 514,050 km2 and comprises of 25 main river basins and 254 sub-basins. As displayed in Fig. 1, the
topography of Thailand comprises of the highest mountain ranges in the North and West, forming the border with Laos and Myanmar,
respectively. This region is the source of several major river basins: including the Ping; Wang; Yom; Nan; Sakae-krang; Tha Chin and
Pasak basins. These river basins flow south and converge to the Chao Phraya basin, which altogether has a total drainage area of
158,587 km2, or roughly a third of Thailand’s area. The convergence of these tributaries form a large floodplain in Central Thailand.
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Fig. 1. The digital elevation of Thailand and the boundaries of the 5 regions.
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The Eastern part of Thailand drains into the Gulf of Thailand. South Thailand consists of many mountainous rivers that flow directly
to the sea. In this study, the country was divided into 5 regions: North and Central, Northeast, East, West and South.

The humid tropical climate of Thailand is influenced by the Southwestern and Northeastern monsoons. The Southwestern
monsoon is responsible for bringing moisture to the entire country between May and October. The Northeastern monsoon brings dry
weather to mainland Thailand between November and April. However, the monsoon provides Southern Thailand with extra rainfall
as moisture is picked up in the Gulf of Thailand. The average annual rainfall depth between 2003 and 2013 of the country is
approximately 1,426 mm/year, whereas for Southern Thailand alone, it is 2,132 mm/year. According to the Koppen climate clas-
sification, Thailand has a tropical savanna climate (Aw), with some coastal areas being classified as Equatorial climate (Af). The
South essentially has a monsoon climate (Am).

2.2. Materials

2.2.1. Gauge rainfall data (P)
The Thailand Meteorological Department (TMD) and Royal Irrigation Department (RID) are responsible for measuring rainfall in

Thailand. The TMD and RID individually operated 1150 and 582 gauged rainfall stations between 2003 and 2013, respectively. Other
departments also operated 47 additional stations for their specific purposes. This brings the total nation-wide number of stations to
1779. Rainfall data from 2003 to 2013 were checked for their accuracy using the Double Mass Curve (DMC) method (Searcy and
Hardison, 1960). Subsequently, 36 stations were eliminated, and daily gridded rainfall datasets with 1 km spatial resolution were
generated for the remaining 1743 stations using the Inverse Distance Square (IDS) method (eg. De Silva et al., 2007). Daily rainfall
was aggregated onto a monthly scale, whereafter zonal statistics were applied to estimate areal-averaged rainfall for the 172 sub-
basins. The drainage area of each sub-basin was carefully determined using the SRTM-30 m model, which is a digital elevation model
from the Shuttle Radar Topography Mission (SRTM) (https://www2.jpl.nasa.gov/srtm/).

2.2.2. Streamflow data (Q)
During the study period, daily streamflow data was measured at the outlet of 195 sub-basins by the RID. Similar to the method

described in section 2.2.1, 23 sub-basins that contained incorrect streamflow data were eliminated, and monthly datasets were
aggregated for the remaining 172 sub-basins to allow for water balance calculations to be performed. The catchment areas of these
sub-basins vary from 25 to 108,566 km2, most of which are located in Western, Northern and Eastern Thailand. The central floodplain
region contains no streamflow stations as runoff is unattainable.

2.2.3. Terrestrial water storage change (TWSC)
To complete the computation of evapotranspiration (ET: see Eq. (1)) through the water balance framework, information on

storage change (ΔS) is required in addition to rainfall (P) and streamflow (Q).

=ET P Q SWB (1)

The Gravity Recovery and Climate Experiment (GRACE) was adopted to represent monthly ΔS in terms of the terrestrial water
storage change (TWSCGRACE) (Wahr et al., 2004). The product already accounts for the distributed and unpredictable interaction
between surface water, soil moisture and groundwater, complex reservoir operations and the gradual change of biomass weights. All
in all, this alleviates the limited accessibility of physically obtaining ΔS across all sub-basins. Furthermore, the physical nature of
monsoonal climate dictates the magnitude of ΔS is significant at monthly time scales as opposed to over the annual scale at which
seasonal fluctuations cancel out. The storage change (TWSCGRACE) over a given time period is computed by taking the difference of
the monthly terrestrial water storage anomalies (TWSA: Rodell and Famiglietti, 1999) between time steps ti+Δt and ti (Billah et al.,
2015; see Eq. (2))

= +TWSC ( t) TWSA(t ) TWSA(t )GRACE i t i (2)

Following the end of the GRACE mission in October 2017, the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO)
was launched in May 2018. This product provides spherical harmonic solutions of TWSA on one-degree grids (Swenson and Wahr,
2006). These TWSA datasets have been processed at (i) the Center for Space Research of the University of Texas (CSR), (ii) the Jet
Propulsion Laboratory (JPL) and (iii) the GeoForschungsZentrum (GFZ). As suggested by Sakumura et al. (2014), the mean value
from each dataset was determined to minimise uncertainties. The value of GRACE data has been demonstrated in many hydrological
studies (e.g. Rodell and Famiglietti, 2002; Long et al., 2014; Jiang et al., 2014). In July 2018, GRACE-FO RL06 was released and it
provides mascon solutions at 0.5-degree resolution. This gridded mascon product is processed by the JPL and is available from
https://podaac-tools.jpl.nasa.gov/drive/files/allData/tellus/L3/mascon/RL06. Coastal resolution improvement (CRI) filters are ap-
plied to coastal mascons, of which provides better separation between land and ocean signals (Cooley and Landerer, 2019). Further,
provided that the mascon-based solution provides greater resolution for smaller spatial regions, the mascon solution of GRACE-FO
RL06 was preferred over the spherical harmonic-based solution.

2.2.4. Evapotranspiration (ET) products
Seven global ET products were chosen to be validated against the water balance and land use classifications. These include: the

Atmosphere-Land Exchange Inverse model (ALEXI) developed by the United States Department of Agriculture (USDA); the CSIRO
MODIS Reflectance-based Scaling ET model (CMRSET); the ETmonitor model from the Chinese Academy of Sciences; the Global Land
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Evaporation Amsterdam Model (GLEAM V3.3b); the gap-filled MOD16A2 V6 from NASA’s MODIS Adaptive Processing System
(MODAPS) and others; the Surface Energy Balance System (SEBS V3) of the University of Twente and the Simplified Surface Energy
Balance model (SSEBop) developed by the United States Geological Survey (USGS). ET data is available for the 2003–2013 period for
all 172 sub-basins. However, ETmonitor only has data available from 2008 since it is a relatively new ET product. A summary of
major characteristics for each dataset is provided in Table 1. Comparisons between annual ET values are based on Thai hydrological
years, which begins on April 1st. All ET products are based on the principles of the surface energy balance, which partitions the net
radiation (Rn) gained by the surface into three components as shown in Eq. (3):

= + +R G H En (3)

where G is the soil heat flux, H is the sensible heat flux and λE is the latent heat flux. The entire discussion on ET modelling relates to
the partitioning between H and λE, of which is the key differentiator amongst the seven ET models. Either H needs to be solved
explicitly, followed by λE as a rest term, or soil moisture information should be used to assess λE directly without solving H. ALEXI,
SEBS, SSEBop and ETMonitor use thermal infrared data to estimate λE and ET. All models use in addition visible and near-infrared
spectral data. The CMRSET approach depends strongly on shortwave infrared data. Over against that, GLEAM and ETMonitor retrieve
soil moisture from microwave data and have a data assimilation scheme to incorporate moisture measurements into a soil water
balance model. MOD16A2 uses atmospheric moisture as a surrogate for soil moisture. This is a nice solution for periods with per-
sistent cloud cover that affects the performance of thermal-based energy balance solutions. Hence, the spectral data used in the 7 ET
models is similar for vegetation indices but differ mutually otherwise to solve the partitioning between H and λE.

All models are based on a reference ET0 with absolute values (mm d−1) to describe day-to-day variability. The Penman-Monteith
formulation partitions H and λE by circumventing the need for surface temperature data (Penman, 1948; Monteith, 1965). Four
models (MOD16A2, ETMonitor, SEBS and SSEBop) include a certain form of the Penman-Monteith equation. SSEBop uses the FAO
standard version for reference ET0 (Allen et al., 1998), while MOD16A2 and SEBS use a specific solution for the aerodynamic and
bulk surface resistances to represent forests (MOD16A2) or cold and wet surfaces (SEBS). ETMonitor is based on a more-advanced
two-layer Penman-Monteith equation (Shuttleworth and Wallace, 1985). The three remaining models (ALEXI, GLEAM and CMRSET)
are based on the Priestley-Taylor equation for reference ET0 which is a simplified solution of the Penman-Monteith equation valid for
saturated land surfaces (Priestley and Taylor, 1972). There is one distinct difference: ALEXI uses Priestley and Taylor for potential
crop transpiration, while GLEAM and CMRSET use it for reference ET0. Another major difference in the 7 ET models is that GLEAM
and ETMonitor use a vertical soil water balance approach to compute daily soil moisture.

Hence, every method has its own merits, and it is very interesting how these models perform in Thailand beyond their safety zone
where they are developed and calibrated. The theoretical background of the seven ET products is presented in the supplementary
materials.

2.2.5. Land use
The land use in Thailand can be classified into eight classes including forest, irrigated agriculture, rainfed agriculture, aqua-

culture, urban, water body, wetland and others. Forestlands, which comprises 35.32% of the total land area, have greater abilities at
retaining incoming precipitation due to deeper root zone and thus higher soil moisture storage, resulting in greater occurrences of ET
compared to other land uses (Sriwongsitanon and Taesombat, 2011). Around 3.44 million ha and 23.12 million ha of agricultural
areas are irrigated and rainfed, of which respectively account 7.62% and 44.08% of the total land area, respectively.

2.2.6. ISODATA unsupervised classification
Iterative Self-Organising Data Analysis Technique (ISODATA) is an unsupervised classification method which iteratively clusters

pixels into the nearest cluster. After initially arbitrarily assigning the means of each cluster, each pixel is assigned to the cluster with
the minimum distance to its mean (Tou and Gonzalez, 1974). Based on the standard deviations of each cluster, those with

Table 1
Summary of the 7 global ET products.

ET product Spectral measurements
used

Energy balance Directly
downloadable

Spatial resolution Original
temporal
resolution

Data Availability
(Number of water
years)Deg km

ALEXI Red, NIR, TIR 2-layer Residual No 0.050 5 Daily 2003-2013 (11)
CMRSET Blue, Red, NIR, SWIR – No 0.050 5 Monthly 2003-2011 (9)
ETMonitor Red, NIR, TIR, PMW,

AMW
2 layer Penman-
Monteith

No 0.010 1 Daily 2008-2012 (5)

GLEAM V3.3b Red, NIR, PMW, AMW 2-layer Priestley &
Taylor

Yes 0.250 25 Daily 2003-2013 (11)

MOD16A2 Red, NIR 3-layer Penman-
Monteith

Yes 0.005 0.5 8 Days 2003-2013 (11)

SEBS V3 Red, NIR, TIR 1-layer Residual Yes 0.050 5 Monthly 2003-2013 (11)
SSEBop Red, NIR, TIR 1-layer Penman -

Monteith
Yes 0.010 1 Monthly 2003-2013 (11)

Note: NIR = Near InfraRed; SWIR = Shortwave InfraRed; TIR = Thermal InfraRed; PMW = Passive Microwave; AMW = Active Microwave.
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dissimilarities greater than the defined thresholds are split, or are otherwise merged. The mean of each cluster is recalculated to
redefine cluster statistics. This process is iterated until the clusters are sufficiently stable – i.e. changes to cluster mean and spread are
below the defined thresholds. Since the average separability values between clusters increases with the number of specified classes,
the set of clusters which provide the highest minimum separability values was considered to be optimal for developing the output
cluster images.

In this study, ISODATA was used to classify monthly average ETRS values into different clusters based on similarities in ET
signatures. The scheme can be hypothesized to cluster pixels based on commonness of physical conditions (land use, leaf area index,
soil type, soil moisture) and water management measures. This extra information was inferred to provide an extra qualitative va-
lidation against the land use classes classified by the Land Development Department (LDD). The selected image and its clusters will be
used to assist ET gradient map analysis (Richards, 1986).

3. Methodology

3.1. Assessing the accuracy of ET products on the annual scale

By using annual rainfall (P), streamflow (Q) and storage change (TWSCGRACE) datasets, the bulk ETWB rate for each sub-basin was
determined using the water balance equation as shown in Eq. (1). Annual ETWB values and ETRS estimates were compared by
aggregating the pixels covering each sub-basin. The ET product with the highest agreement to ETWB was determined.

3.2. Assessing the accuracy of ET products on the monthly scale

As opposed to modelling ΔS on an annual time scale, there is lower confidence on monthly time scales, for the reasons outlined in
Section 2.2.3. Thus, to assess the accuracies of these products on a monthly time scale, the resultant ETRS values are input into an
inverted version of the water balance to provide an estimate of storage change, as shown in Eq. (4).

ΔSET = P – Q - ETRS (4)

The seven resulting ΔSET datasets were compared to storage changes as derived from GRACE (i.e. TWSCGRACE) to deduce the most
plausible ET product. Standard correlation indicators including slope, R2 and Nash-Sutcliffe coefficient (NSE) were adopted.

3.3. Correlation between ETRS estimates and land use classifications

To provide additional creditability to certain products, ETRS data is parsed against land use data. Since 87.02% of Thailand is
covered by forest, irrigated crops and rainfed agriculture, the ISODATA algorithm was used to classify monthly ETRS values into these
three predominant land use classes. Confusion matrices were used to compute the degree of correctness of classifying ETRS pixels to
the supposed land use class by dividing the sum of the diagonal elements by the total number of pixels, as shown in Eq. (5). The
overall accuracies were further assessed by Cohen's Kappa coefficient (K) as expressed in Eq. (6) (Congalton, 1991).

= = X
N

Degree of correctness
100 ( )i

r
ii1

(5)

= = = + +

= + +

N X X X
N X X

Kappa coefficient
( ) ( )

( )
i
r

ii i
r

i i

i
r

i i

1 1
2

1 (6)

where xii is the total number of pixels in row i, column i, N is the total number of pixels, r is the number of rows (columns), xi + and x
+ i are the total rows and columns, respectively.

4. Results

4.1. Accuracy of ET products on the annual scale

The correlation of annual ET estimates from each product (ETRS) to ETWB has been displayed in Fig. 2 as through a scatterplot.
Each data point represents the annual ET averages for each sub-basin. To demonstrate the impact of sub-basin size on ET occurrence,
each point was multiplied by its corresponding watershed area. ETMonitor, GLEAM V3.3b and MOD16A2 displayed near perfect
correlation to ETWB, requiring 0%, 2% and 2% of bias correction to conserve the water balance, respectively. Moreover, each product
showed R2 and NSE indicators of 0.97 or above. These products have not been calibrated by ground measurements in Thailand
before, which makes these results rather encouraging. CMRSET and ALEXI required bias correction of 7–8%, despite the other two
indicators yielding similar results to the best-performing products. Conversely, SEBS V3 and SSEBop produced large over-predictions,
thus requiring corrections of 12% and 32%, respectively. While the physics of these latter models seem more rigorous, the perfor-
mance under practical conditions shows that other aspects impact the reliability of ET predictions in an operational context.
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Fig. 2. Correlation between annual ETWB and annual ETRS values from 7 ET products in 172 sub-basins from 2008 to 2012 without any a priori
calibration or tuning.
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4.2. Accuracy of ET products on the monthly scale

To deduce the ET product that most plausibly mimics monthly storage change dynamics, Fig. 3 compares monthly ΔSET and
TWSCGRACE estimates for 32 example sub-basins which represent an entire range of sub-basins from ∼100 km2 to ∼110,000 km2 in
size. Certain ΔSET products yielded temporal trends with more similarity in magnitude and graduality of changes than others,
confirming the hypothesis that each ET product has its own cyclic behaviour. Further, Fig. 4 shows scatterplots between monthly
ΔSET and TWSCGRACE from 2008 to 2012 across 172 sub-basins. To our surprise, all products demonstrated relatively strong ade-
quacies at capturing temporal variations of storage changes (NSE>0.51). CMRSET and MOD16A2 were the top-performing products
(NSE>0.70, R2>0.67), despite having large systematic biases which can be easily adjusted. These results are indicative of the
capabilities of GRACE to represent monthly storage changes in catchments of various sizes. Based on the criteria of showing highest
NSE values, GLEAM V3.3b (0.69) and ETMonitor (0.67) were selected alongside CMRSET and MOD16A2 to undergo further analysis.
Despite posting similar results, a significant factor that differentiates these best-performing products is their spatial resolutions.

Possessing fine spatial resolutions of 0.5 km and 1 km, MOD16A2 and ETMonitor respectively provide much greater detail over
CMRSET (5 km) and GLEAM V3.3b (25 km), thus creating more variability at the temporal scale and thus better expressing the bulk
behaviour of composite terrain. This additionally limits their usage is key hydrological applications such as water accounting, irri-
gation management, as well as drought detection.

4.3. Correlations between ETRS estimates and land use classifications

Given that CMRSET, MOD16A2, GLEAM V3.3b and ETMonitor most accurately captured monthly ET dynamics in Thailand, the
ISODATA scheme was implemented on these four products to deduce the one which most correctly classifies the land use type of each
pixel with respect to the LDD classifications.The classification of ETRS pixels into four clusters provided the highest minimum

Fig. 3. Comparison between TWSCGRACE and monthly storage changes across 32 example sub-basins of various areas during 2008-2012. Black line
represents TWSCGRACE, while the grey area indicates variation of ΔSET from 7 ET products.
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separability values, and was therefore considered to be optimal for producing the output cluster images. The four clusters appear to
be in the order of decreasing average ET values. It could be easily deduced that the two lower clusters are well-watered and water-
stressed croplands, respectively. Thus, in accordance to Fig. 5, clusters 3 and 4 represent irrigated and rainfed agricultural areas,
respectively. In contrast, clusters 1 and 2 have the highest ET values and can thus be classed as forestlands and perineal vegetation.
However, for Eastern and Southern Thailand, the high ET occurrences can be attributed to the greater annual rainfall over other
regions, as shown in Fig. 6B. Therefore, the four-cluster classification was replaced with a three-cluster classification through merging
clusters 1 and 2 into the forest/perineal land use (i.e. cluster 1) as shown in Fig. 6C–F. The confusion matrices have been presented in
Table 2, while the Kappa coefficient ( ) and degree of correctness (DOC) are displayed in Table 3. With respect to the LDD land use

Fig. 4. Scatterplots between monthly ΔSET and TWSCGRACE from 2008 to 2012 across 172 sub-basins.
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classification (Fig. 6A), the greatest agreement was demonstrated with the spatial variation of MOD16A2 ( = =DOC0.52, 70.55%),
followed by CMRSET (0.34 and 63.97%), GLEAM V3.3b (0.23 and 45.40%), and ETmonitor (0.15 and 45.97%). Assuming that land
use is a dominant constraint for the occurrence of ET, the strong performance of MOD16A2 in this test concludes that the product is
the most suitable product amongst the seven applicants.

5. Conclusion

Seven global ET products computed from spectral remote sensing measurements have been tested and evaluated by an in-
dependent and international science team. None of the products have been developed for Thailand, so this is a real independent check
for humid tropics with forests, rainfed and irrigated crops. The ET products were compared to bulk ET which was calculated from the
residual of basin rainfall, changes in terrestrial water storage and streamflow at the outlet of 172 sub-basins. The results showed all
ET products to strongly resemble annual water balances (NSE> 0.88). It is quite impressive to witness these levels of accuracy with
minimum bias correction for some of the products. In addition, monthly storage change were rather adequately captured by all ET
products (NSE> 0.51). This also indicates the robustness of the GRACE satellite product for capturing seasonally-induced dynamics
of storage changes. However, considering their relative performances and spatial resolutions, four of the seven products (CMRSET,
MOD16A2, GLEAM V3.3b and ETMonitor) were deemed to be meritable to be further examined by assessing the ability to provide ET
estimates consistent to the soil moisture conditions and thus land use classes. MOD16A2 was able to classify ETRS pixels into either
forest/perineal, irrigated- and rainfed-agricultural areas with most correspondence to the LDD land use classifications. In other
comparison studies, MOD16A2 was usually not ranked as the best (Trambauer et al., 2013; Hu et al., 2015), but the scientific facts for
the good agreement for the environmental conditions in Thailand cannot be disregarded. Apparently, the tropical savanna climate
(Aw) amended by the Equatorial climate (Af) in the coast and monsoon climate (Am) in the Southern region are suitable for
MOD16A2. Fortunately, the open data access provides great opportunities for this most-promising product to be utilised for various
applications in Thailand, including in the fields of hydrology, agronomy and irrigation processes.

6. Discussions

This ground-breaking study significantly improves on previous water balance studies owing to our access to high-quality daily
rainfall and runoff measurements. In addition, this study has demonstrated the competence of the GRACE satellite mission in cap-
turing the seasonal dynamics of terrestrial water storage. Moreover, the comparison to established land use classifications provides
the ultimate hurdle for testing the ability to provide realistic ET estimates. Therefore, this validation procedure that we have devised
should provide a general yet vigorous test that could be adopted beyond our area of study. On another note, future research should
focus on investigating the spatiotemporal variability of soil moisture which directly impact on ET fluxes. However, field measure-
ments of soil moisture in large river basins is near impossible, necessitating the exploration of potential indirect remote sensing
techniques.
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Table 2
Showing the correspondence between the ET clusters with the land use classifications as defined by the LDD for ETmonitor, GLEAM V3.3b,
MOD16A2 and CMRSET.

Region LDD Land use class Cluster representing decreasing average ET value

ETmonitor GLEAM V3.3b MOD16A2 CMRSET

1 2 3 1 2 3 1 2 3 1 2 3

Eastern Forest/Perineal 13673 750 3845 25792 228 4069 6995 38 140 14140 2138 3592
Irrigated Crop 1689 1423 2724 58983 5210 25053 5497 910 1554 1117 739 3111
Rainfed Crop 226 1131 283 4964 9803 13632 2792 1954 5084 59 421 91

Northern & Central Forest/Perineal 43784 7618 12846 25792 228 4069 62359 99 4141 84927 12658 21422
Irrigated Crop 6776 4161 16849 58983 5210 25053 21226 6058 10345 4142 876 8689
Rainfed Crop 40933 3464 13312 4964 9803 13632 7360 8597 28234 2038 1703 12826

Northeastern Forest/Perineal 13780 436 5240 5034 230 710 14585 5 829 25202 1708 13929
Irrigated Crop 21271 3681 59716 12388 321 10032 8633 631 5553 9886 2548 37362
Rainfed Crop 2858 910 13032 18935 4424 66315 14652 4286 71063 2674 771 26546

Southern Forest/Perineal 45566 813 1197 44311 1271 1404 42566 290 668 46599 1540 1436
Irrigated Crop 10 8 0 0 0 0 3251 1255 759 1 0 4
Rainfed Crop 1822 822 303 0 0 0 13 5 3 1 23 0

Western Forest/Perineal 20102 380 1065 15635 3 653 21361 97 388 25222 1635 2415
Irrigated Crop 3814 460 2309 5635 1127 2550 3130 319 1092 322 126 430
Rainfed Crop 2489 984 809 3082 556 896 1597 1225 2647 577 28 1321

Thailand Forest/Perineal 136905 9997 24193 116564 1960 10905 147866 529 6166 196090 19679 42794
Irrigated Crop 33560 9733 81598 135989 11868 62688 41737 9173 19303 15468 4289 49596
Rainfed Crop 48328 7311 27739 31945 24586 94475 26414 16067 107031 5349 2946 40784

Table 3
Accuracy assessment of the classification of ETRS pixels into the three LDD land use classes by four ET products.

Index Region ETmonitor GLEAM V3.3b MOD16A2 CMRSET

Kappa E 0.23 0.08 0.29 0.17
NC 0.03 0.08 0.43 0.28
NE 0.10 0.18 0.40 0.23
S 0.20 0.00 0.36 0.01
W 0.21 0.21 0.42 0.32
TH 0.15 0.23 0.52 0.34

Percentage Correct E 59.74 30.21 52.03 58.92
NC 40.91 30.21 65.12 66.07
NE 25.22 60.54 71.76 45.01
S 90.77 94.31 89.78 93.94
W 65.94 58.59 76.37 83.14
TH 45.97 45.40 70.55 63.97
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