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Radar rainfall was proved in this study to be an effective input data for improving 

the accuracy of flood estimates compared to the gage rainfall in the upper Ping river basin. 

The URBS (rainfall-runoff model) was first chosen for flood estimation at the stations P.20, 

P.4A, P.28, P.21, and P.71 using daily gauge rainfall (DGR) as the input data. The NAM 

model – one of the most reliable commercial models – was also applied at these 5 stations. 

Results of flood hydrograph obtained from these models are very close. However, the URBS 

model requires only 4 parameters whereas the NAM requires 6 in the calibration, the URBS 

model was therefore chosen for further analysis. The URBS model was then applied at other 

6 stations in the study basin. The ungauged relationships between the URBS model 

parameters and catchment characteristics were also formulated to be used for the ungauged 

catchments in the study area. Thereafter, the radar reflectivity data (Z), obtained from the 

Omkoi radar, and the corresponding rainfall data (R) were used to formulate the most 

suitable relationship; Z=74R1.6, which can be used to estimate daily radar rainfall (DRR) and 

hourly radar rainfall (HRR) in the upper Ping river basin. To be able to possibly improve the 

accuracy in runoff estimate, the scaling transformation equation was generated (using 

reflectivity and corresponding continuous rain gauge data from Bangkok, and Sydney and 

Brisbane, Australia) to be used as the logic to prepare the hourly radar rainfall (HRRS). Four 

types of rainfall data (DGR, DRR, HRR, and HRRS) were finally used as the input data for 

the URBS model to estimate the flood hydrographs at the stations P.21, P.71, P.77, P.24A, 

P.73, and P.14. The accuracy of overall hydrograph and peak flow estimated using all radar 

rainfall data are generally higher than that of estimated using the DGR, respectively. The 

use of HRR however cannot produce better results of runoff hydrograph than the use of 

DRR. On the other hand, the HRRS has shown its ability to improve the accuracy of runoff 

estimates, especially the overall hydrographs. The scaling logic is therefore necessary to be 

applied to prepare the HRRS for the situation like in the upper Ping river basin, where daily 

Z-R relationship is only available. 
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APPLICATIONS OF RAIN GAUGE AND RADAR RAINFALL TO  

A HYDROLOGIC MODEL FOR FLOOD ESTIMATION 
 

INTRODUCTION 
 

Flood forecasting is a non-structural measure that is a very useful tool to 

mitigate flood hazard which causes economic and social damage, especially with 

regard to human life. To be able to estimate flooding correctly, a hydrologic model is 

a very crucial tool (Singh et al., 2002). Conventional hydrologic models were 

developed based on the hydrologic cycle imitation. However, there are many 

components involved in the cycle such as interception, infiltration, depression storage, 

evaporation, subsurface flow, groundwater flow, overland flow, and channel flow 

(Wilson, 1983; Chow et al., 1988). As a result, various computer software packages 

have been developed for runoff estimation by the considerations only some significant 

hydrologic cycle components. Examples of well known runoff estimation models are 

the TANK model (Sugawara, 1974), TOPMODEL model (Beven et al., 1979; Beven 

et al., 1984; Beven, 1997), NAM model (DHI, 1990), HEC-HMS model (HEC, 2000), 

SWAT model (Neitsch et al., 2002), and URBS model (Carroll, 2004).  

 

In this study, the most suitable hydrologic model according to proposed 

criteria will be chosen for flood estimation that will be carried out at the upper Ping 

river basin, which has been facing serious flooding problems during the last decade. 

To be able to confirm an effectiveness of the chosen model for flood estimation in the 

study area, the NAM model - a sub-module of the MIKE 11 model package, which 

has been accepted and generally applied for many basins world wide but it is quite 

expensive model – will also be applied at the same runoff stations and the results of 

the flood hydrographs gained from these two models will be compared to identify 

their effectiveness. In the model application, rain gauge rainfall will be used as the 

input data for these two hydrologic models. Rain gauge rainfall is therefore one of the 

most significant data influences the results of estimated flood hydrograph. 

Unfortunately, the distribution of rainfall usually varies significantly in both space 

and time (Seed and Austin, 1990); therefore, the limited number of rainfall stations in 
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the catchment can have a significant impact on the accuracy of flood estimations 

(Wilson, 1979; Bevan and Hornberger, 1982; Hamlin, 1983). This problem also 

occurs in Thailand basins including the upper Ping river basin. This study aims to 

improve the accuracy of flood hydrograph prediction in the study area by proposing 

spatial rainfall estimation method using weather radar. This is because the weather 

radar, which is a widely used basis for rainfall estimation at fine spatial and temporal 

resolutions (Collinge and Kirby, 1987; Sun et al., 2000; Uijlenhoet, 2001; Vieux, 

2003), can better capture the spatial variation of rainfall fields than rain gauge rainfall 

data in areas where rain gauges are distributed sparsely (Yang et al., 2004; Segond et 

al., 2007). Moreover, there are number of papers shown the improvements in flood 

estimation and flood forecasting using radar rainfall data as the input data to 

hydrological models (Wyss et al., 1990; Pessoa et al., 1993; Borga et al., 2000; Sun et 

al., 2000).  

 

In this study, the relationship between radar reflectivity data (Z) - obtained 

from the Omkoi radar - and corresponding rain gauge rainfall data (R) at the upper 

Ping river basin will be investigated to be used for temporal and spatial rainfall 

estimation. Rain gauge rainfall and radar rainfall will later be applied as the input data 

for the selected hydrologic model at particular runoff stations in the study area. 

Results of flood hydrograph estimated by these two sets of rainfall data will be 

compared for their accuracy and effectiveness. 
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OBJECTIVES 
 

 1. To study the theory and concept of the well known hydrologic public 

domains or low cost models. A suitable hydrologic model for rain gauge and radar 

rainfall data will be chosen for flood estimation in the upper Ping river basin. 

 

2. To setup the selected hydrologic model using rain gauge rainfall as the input 

data for different runoff stations in the upper Ping river basin. 

 

3. To calibrate the relationship between the radar reflectivity factors (Z) and 

rainfall rates (R) using radar reflectivity data and corresponding rain gauges data 

available within the upper Ping river basin.  

 

4. To propose a generic scaling rule that can be used to estimate radar rainfall 

at fine temporal resolution for the cases where only daily rain gauge rainfall data are 

available for use in the Z-R calibration. 

 

5. To setup the selected hydrologic model using rain gauge and radar rainfall 

as the input data for different runoff stations in the upper Ping river basin. The results 

gained from different input datasets will be compared for their reliability and 

effectiveness for flood estimation in the upper Ping river basin. 
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Scopes 
 

1. The comparison between the well known hydrologic models will be carried 

out and the suitable model will be chosen to suit the upper Ping river basin.  

 

2. To setup the selected hydrologic model for different runoff stations in the 

upper Ping river basin by using gauge rainfall as the input data. The performance 

comparison between the selected model and the NAM model will be verified at some 

runoff stations in the upper Ping river basin. 

 

3. The recorded instantaneous reflectivity data and ground truth rainfall data 

for different flood events will be used to evaluate of the parameters A and b in Z-R 

relationship for the upper Ping river basin. This relationship will be used to estimate 

the initial radar rainfall for a specific flood event in the upper Ping river basin.  

 

4. To study the impact of gauge rainfall temporal resolution on the 

specification of a Z-R relationship. Climatological Z-R relationships will be calibrated 

using rainfall aggregated over 1 to 24 hours to investigate the evidence of temporal 

scaling in the Z-R calibrated parameters using the data collected from Sydney and 

Brisbane, Australia, and Bangkok, Thailand. A simple scaling hypothesis will 

thereafter be proposed to develop transformation equations that could scale the A 

parameter in the Z-R relation across a range of temporal resolutions. 

 

5. To estimate daily and hourly radar rainfall using the Z-R relationship of 

Omkoi radar and the scaling transformation equation. 

 

6. The selected hydrologic model will be set up for flood hydrograph 

estimation at the appropriate runoff stations located within the radar radius of the 

Omkoi radar using rain gauge and radar rainfall as the input data. Results of flood 

hydrograph can be used to show the suitability of applying radar rainfall to replace the 

conventional data of rain gauge rainfall.  
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LITERATURE REVIEW 
 

1.  Study area description 

 

 The Ping river basin is situated in Northern Thailand and has an area of around 

34,856 km2 across five provinces: Chiang Mai, Lamphun, Kamphaeng Phet, Tak, and 

Nakhon Sawan Provinces. The Ping river - the main river of the Ping River Basin - 

has a 740 km length and originates in Chiang Dao District in the north of Chiang Mai. 

The Ping flows downstream to the south and joins the Wang and Nan Rivers at Tak 

and Nakhon Sawan Provinces, respectively, to become the Chao Phraya River which 

has a catchment that covers the area of around one third of the country. There are 3 

large reservoirs situated in the Ping river basin: the Bhumiphol, Mae Kuang, and Mae 

Ngat Reservoirs with the capacity of approximately 13,462, 263, and 265 mcm, 

respectively. The Bhumiphol Dam, located in Doi Tao District in Chiang Mai 

Province, separates the Ping river basin into two parts called the upper Ping and the 

lower Ping river basins.  

 

 The upper Ping river basin, which is chosen as the study area, has a catchment 

area of approximately 25,370 km2 in Lam Phun and Chiang Mai Provinces. The basin 

is located between latitude 17° 14′ 30″ and 19° 47′ 52″ north, and between longitude 

98° 4′ 30″and 99° 22′ 30″ east. The terrain of the basin is undulating and rolling. The 

upper Ping river basin can be separated into 14 sub-basins (Figure 1) consisting of the 

following sub-basins: 1) the upper Ping river, 2) Nam Mae Ngat, 3) Nam Mae Taeng, 

4) the Ping river section 2, 5) Nam Mae Rim, 6) Nam Mae Kuang, 7) Nam Mae Ngan, 

8) Nam Mae Li, 9) Nam Mae Klang, 10) the Ping river Section 3, 11) upper Mae Jam, 

12) Lower Mae Jam, 13) Nam Mae Hat, and 14) Nam Mae Tun. The average annual 

runoff and rainfall are around 6,815 mcm and 1,174.1 mm, respectively.  
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Figure 1  Location of the upper Ping river basin and its sub-basins. 

Source: Department of Water Resources (2003) 
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2.  Hydrologic Model 

 

Hydrologic model is a very crucial tool for flood estimation. Conventional 

hydrologic models were developed based on the hydrologic cycle imitation. However, 

there are many components involved in the cycle such as interception, infiltration, 

depression storage, evaporation, subsurface flow, groundwater flow, overland flow, 

and channel flow (Wilson, 1983; Chow et al., 1988). Most parameters for these 

processes cannot be measured directly. Many researchers have developed different 

techniques to estimate unmeasured hydrological components. Horton (1919, 1933, 

1935, 1939) suggested the empirical formulas to estimate interception, infiltration, 

channel flow, and overland flow, respectively. Lowdermilk (1934); Hursh (1936); and 

Hursh and Brater (1944) concluded that subsurface water is a significant hydrological 

component in flood hydrographs by observation in humid regions. Keulegan (1944) 

introduced the kinematic wave approach for overland flow. Soil Conservation service 

(1956) developed the SCS curve number approach to evaluate rainfall loss rate. 

Various computer software packages have been developed for runoff estimation by 

the considerations only some significant hydrologic cycle components. More 

complicated models normally require more input data and are difficult to apply, 

especially for catchments with limited or no hydrologic data. In this study, model 

ability of 4 hydrologic models namely NAM, HEC-HMS, URBS, and SWAT models 

will be compared, and the most suitable model will later be chosen for flood 

estimation in the upper Ping river basin. The theory and concept of the four models 

can be described below. 

 

2.1  NAM Model 

 

NAM model is an acronym for Nedbor-Afstromings Model that means 

precipitation-runoff model. It was developed by Hydrological Section of the Institute 

of Hydrodynamics and Hydraulics Engineering, Technical University of Denmark 

(Nielsen and Hansen, 1973). The model is based on physical structures and semi-

empirical equations to imitate the behavior of the land phase of the hydrologic cycle. 

Catchments are represented by four storage layers including snow, surface, lower 
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zone, and groundwater as shown in the Figure 2. However, only three storages 

excluding the snow storage were consider in Thailand river basin including this study.  
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Figure 2  NAM Model structure. 

Source: Danish Hydraulic Institute (1990) 

 

   Flow storage approximations are provided in the NAM model manual 

prepared by the Danish Hydraulic Institute (NAM Documentation and User’s Guide, 

1990) and also briefly presented in this thesis as follows.  

 

a.  Surface storage 

 

The upper limit of the amount of water in the surface storage is 

denoted as Umax. The amount of water, U, in the surface storage is continuously 

diminished by evaporative consumption as well as by horizontal leakage (interflow). 

When there is maximum surface storage, some of the excess water, PN, will enter the 
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streams as overland flow, whereas the remainder is diverted as infiltration into the 

lower zone and groundwater storage. The overland flow (QOF) equation can be 

shown below. 

 

TOFLLfor

TOFLLforP
TOF

TOFLLCQOFQOF N

≤=

>
−

−
=

max

max
max

/0

/
1

/
  (1) 

 

where CQOF is overland flow runoff coefficient (O ≤ CQOF ≤ 1), TOF is threshold 

value for overland flow (O ≤ TOF ≤ 1), and L/ Lmax = relative soil moisture content 

 

b.  Lower zone storage 

 

The soil moisture in the root zone, a soil layer below the surface 

from which the vegetation can draw water for transpiration, is represented as lower 

zone storage. Lmax denotes the upper limit of the amount of water in this storage. 

Moisture in the lower zone storage is subject to consumptive loss from transpiration. 

The moisture content controls the amount of water that enters the groundwater storage 

as recharge and the interflow and overland flow components. The amount of 

infiltrating water G recharging the groundwater storage depends on the soil moisture 

content in the root zone as presented in the equation below. 

 

 

( )

TGLLfor

TGLLfor
TG

TGLLQOFPG n

≤=

>
−

−
−=

max

max
max

/0

/
1

/
  (2) 

 

where, TG = the root zone threshold value for groundwater 

recharge (O ≤ TG ≤ 1) 

 

The amount of water remained in the lower zone storage (DL) are 

calculated using the following equation. 
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( ) GQOFPDL n −−=      (3) 

 

The interflow contribution (QIF) is assumed to be proportional to 

U and to vary linearly with the relative moisture content of the lower zone storage. 

 

TIFLLfor

TIFLLforU
TIF

TIFLLCKIFQIF

≤=

>
−

−
=

max

max
max

/0

/
1

/
  (4) 

 

where, CKIF = time constant for interflow, and TIF = root zone threshold value for 

interflow (O ≤ TIF ≤ 1) 

 

Evapotranspiration which is an important process for the 

calculation in surface and lower zone storage can be calculated using the following 

equation.  

 

( )max/ LLEE pa =      (5) 

 

where Ep is potential evapotranspiration.  

 

c.  Groundwater storage  

  

The water percolated from the lower zone storage will be retained 

in groundwater storage. Groundwater level (GWL) represents the groundwater table 

depth measured from ground level. There are 4 essential parameters needed for 

groundwater level calculation which are a recharge G, capillary flux CAFLUX, net 

groundwater abstraction GWPUMP, and baseflow BF. The baseflow can be 

calculated as follows. 
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0
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  (6) 

 

where, GWLBF0 = maximum groundwater table depth, Sy = specific yield of 

groundwater reservoir. 

 

The Capillary Flux is calculated using the equation below. 
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    (7) 

 

where, GWLFL1 is groundwater table depth at which capillary flux  

 

2.2  HEC-HMS Model 

 

HEC-HMS is an acronym for Hydrologic Modeling System, which was 

developed by the Hydrologic Engineering Center (HEC) of U.S. Army Corps of 

Engineering since March 1998. It can be used to simulate the processes of 

precipitation-runoff and runoff routing for both natural and controlled channel system. 

The model is a modified version of the HEC-1 Model by improving the capability of 

HEC-1 and provides capabilities for distributed modeling and continuous simulation. 

There are 4 sub-models provided by the HEC-HMS for precipitation-runoff-routing 

simulation which are: 1) Runoff-Volume models, 2) Direct-Runoff models, 3) 

Baseflow models, and 4) Channel flow models. However, this study has objective to 

study the rainfall-runoff process for flood estimation in the upper Ping river basin, 

only 3 categories excluding the channel flow models were considered in this study. 

Details of the three models are presented as follows. 
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2.2.1  Runoff-Volume Models 

 

 The runoff-volume models or rainfall loss models contain 

several techniques for excess rainfall estimation. The HEC-HMS computes runoff 

volume by computing the volume of water that is intercepted, infiltrated, stored, 

evaporated, or transpired and subtracting it from the precipitation. Interception and 

surface storage are intended to represent the surface storage of water by trees or grass, 

local depressions in the ground surface, cracks and crevices in parking lots or roofs, or 

a surface area where water is not free to move as overland flow. Infiltration represents 

the movement of water to areas beneath the land surface. Interception, infiltration, 

storage, evaporation, and transpiration collectively are referred to in the HEC-HMS 

program and documentation as losses. Gross rainfall subtracted by the mentioned 

rainfall losses will become the excess rainfall. There are 6 sub-models provided by the 

HEC-HMS for rainfall losses estimation. Details of theory and concept of those loss 

models are presented as follows. 

 

a.  The initial and constant-rate model 

 

        The underlying concept of the initial and constant-rate loss 

model is that the maximum potential rate of precipitation loss ( cf ) is constant 

throughout an event. If pt is mean areal rainfall during a time interval t to tt Δ+ , the 

excess rainfall (pet) during the interval is therefore given by: 

 

  
⎭
⎬
⎫

⎩
⎨
⎧

≤
>−

=
ct

ctct
t fpf

fpiffp
pe

i0
     (8) 

 

If the initial loss (Ia) is added to the model to represent the 

loss caused by interception and depression storage, the excess rainfall equation above 

is then changed by the following: 
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b.  The Deficit and Constant-Rate Model 

 

        This model is a quasi-continuous model of precipitation 

losses. It is similar to the initial and constant-rate loss model, but the initial loss can be 

recovered after no rainfall for a long period.  

 

c.  The SCS Curve Number Loss Model 

 

        The Soil Conservation Service (SCS) Curve Number (CN) 

estimates rainfall excess as a function of cumulative rainfall, soil cover, land use, and 

antecedent moisture, using the following equation: 

 

SIP
IP

P
a

a
e +−

−
=

2)(
     (10) 

 

where Pe is accumulated precipitation excess at time t, P is 

accumulated rainfall depth at time t, Ia is the initial abstraction (initial loss), and S is 

potential maximum retention. From the study of runoff estimation in many small 

watersheds in USA, the SCS developed an empirical relationship of Ia and S: 

 

SIa 2.0=      (11) 

 

Therefore, the cumulative rainfall excess at time t is: 

 

SP
SPPe 8.0

)2.0( 2

+
−

=      (12) 
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The relationship between the potential maximum retention and the CN parameter can 

be shown as the follows. 
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The CN which is represented a watershed characteristic can 

be estimated as a function of land use, soil type, and antecedent watershed moisture 

using the SCS tables (SCS, 1971, 1986). However, the CN derived from the tables 

represent only one soil type and land use, the several soil types and land used can be 

estimated by using a composite CN as follows.  

 

∑
∑=

i

ii
composite A

CNA
CN     (14) 

 

where compositeCN is the composite CN, i is an index of subdivided watersheds, iA is 

subdivided catchment area. 

 

d.  Gridded SCS model 

 

        This model is another sub-model of the HEC-HMS model 

using for the CN estimation. For the model application, a basin will be divided as grid 

cells, and each cell has only one CN represented a watershed characteristic. The 

description of each cell composes of the location of the cell, the travel distance from 

the watershed outlet, the cell size, and the cell CN. The HEC-HMS computes 

precipitation excess for each cell independently using Eq (12), the excess rainfall will 

thereafter routed to the outlet of the watershed using the ModClark method. 
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e.  Green and Ampt loss model 

 

        This model is a conceptual model of precipitation 

infiltration. The model computes the precipitation loss on the pervious area using the 

equation below. 

 

⎥
⎦

⎤
⎢
⎣

⎡ −+
=

i

fi
t F

S
Kf

)(1 θφ
    (15) 

 

      where, f  = loss during period t, K = saturated hydraulic 

conductivity, tθφ −  = volume moisture deficit, fS  = wetting front suction, tF  = 

cumulative loss at time t 

 

f.  Continuous Soil-Moisture Accouting Model (SMA) 

 

        Since most of concepts of the models described earlier are 

event models that simulate hydrological behavior during a precipitation event, 

whereas the SMA model is a continuous model that simulates both wet and dry 

weather behavior. The model simulates the watershed with a series of storage layers 

as illustrated by the following figure.  
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Figure 3  Conceptual schematic of the contimuous soil moisture accouting algorithm. 

Source: Bennett (1998) 

 

2.2.2  Direct Runoff Models 

 

             There are 6 sub-models in the direct runoff models. All models 

excepted kinematic-wave model are unit hydrograph (UH) models, whereas 

kinematic-wave model is a conceptual model. Details of each sub-model can be 

presented below. 
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a.  User-Specified Unit Hydrograph 

 

       HEC-HMS model directly allows user to specify a UH by 

entering all ordinates of the UH via the user interface.  

 

b.  Snyder’s Unit Hydrograph Model 

 

For this technique, Snyder selected the lag, peak flow, and 

total time base as the critical characteristics of a UH. He defined a standard UH as one 

whose rainfall duration, tr, is related to the basin lag, tp, by: 

 

rp tt 5.5=      (16) 

 

The UH lag and peak per unit of excess precipitation per 

unit area of the watershed were related by: 

 

p

pp

t
C

C
A

U
=      (17) 

 

where PU  is peak of UH, A  is catchment area, PC  is UH 

peaking coefficient, and C  is conversion constant (2.75 for SI or 640 for English 

unit).  

 

In case of the other rainfall durations, the relationship in Eq. 

(16) and Eq.(17) will be changed as the following equation.  

 

4
Rr

ppR
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where Rt  is duration of desired UH, pRt  is lag of desired UH, and PU  is peak of 

desired UH. 

 

c.  SCS Unit Hydrograph Model 

 

        There are 2 important parameters in SCS model. The first is 

unit hydrograph peak discharge ( )PU , and another one is time to unit hydrograph 

peak ( )PT . These parameters will be applied to the dimensionless unit hydrograph as 

shown in Figure 4 to produce unit hydrograph. SCS research suggests that the unit 

hydrograph peak and time of unit hydrograph peak are related by the following 

equations: 

 

P
P T

ACU =      (20) 

  

where A  is catchment area, C  is conversion constant (2.08 for SI or 484 for English 

unit). The time of peak ( PT ) is related to the duration of the unit of excess 

precipitation as:  

lagP ttT +
Δ

=
2

     (21) 
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Figure 4  SCS Unit Hydrograph. 

Soruce: USACE (2000) 

 

        where tΔ  is the excess precipitation duration, and lagt  is the 

Basin Lag. 

 

d.  Clark’s Unit Hydrograph Model 

 

        Clak’s UH model has an assumption that the storages in the 

whole catchment including soil, surface and channel storages are important to rainfall-

runoff process. Linear reservoir can represent the effect of these storages. The basic 

equations of linear reservoir are presented as: 

 

tt OI
dt
dS

−=      (22) 
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   where, dtdS /  is time rate of change of water in storage at time 

t, tI  is average inflow to storage at time t and tO  is average outflow from storage at 

time t. The relationship between storage at time t and the outflow of the linear 

reservoir model can be shown as: 

tt ROS =      (23) 

 

   where, R  is a constant linear reservoir parameter, and tO  is 

outflow from storage at time t. These two above equations will be combined, and the 

simple finite difference approximation is then used for solving the equations. The 

modified equation is performed as: 

 

1−+= tBtAt OCICO      (24) 

 

   where, BA CC ,  are routing coefficients which are calculated 

from: 

 

tR
tCA Δ+

Δ
=

5.0
     (25) 

 

AB CC −= 1       (26) 

 

The average outflow during period t  is 

 

2
1 tt

t
OO

O
+

= −      (27) 

 

e.  ModClark Model 

   

The concept of ModClark (modified Clark) model based on 

quasi-distributed approach (Peters and Easton, 1996) are similar to Clak’s UH model, 

but in model application the watershed will be divided as grid cells representing sub-
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catchment. Distance from each grid to watershed outlet will be specified by user, 

while translation time to outlet can be calculated using the following equation. 

 

maxd
d

tt lcel
ccell =       (28) 

 

where cellt  is time of travel for a cell, ct  is time of concentration for the watershed, 

celld  is travel distance from a cell to the outlet, and maxd  is travel distance for the cell 

that is most distant from the outlet.   

 

f.  Kinematic-wave model 

 

Kinematic-wave model is a conceptual model for open 

channel flow simulation. This model represents a watershed as an open channel (a 

very wide, open channel), with inflow to the channel equal to the excess precipitation. 

Then it solves the equations that simulate unsteady shallow water flow in an open 

channel to compute the watershed runoff hydrograph. Momentum and continuity 

equation are fundamental equations of the kinematic-wave model. In one dimension, 

the momentum equation is: 

 

t
V
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ySS f ∂

∂
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∂
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0     (29) 

 

where fS  is energy slope, 0S  is bottom slope, V  is velocity, y  is hydraulic depth, x  

is distance along channel, t  is time, g  is gravity acceleration, 
x
y
∂
∂  is pressure 

gradient, 
x
V

g
V

∂
∂  is convective acceleration, and 

t
V

g ∂
∂1  is local acceleration (Chow, 

1959; Chaudhry, 1993). The energy gradient can be estimated using the Manning’s 

equation written as: 
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A
N

SCR
Q f

2/13/2

=      (30) 

 

   where Q  is flow, R  is hydraulic radius, A  is cross-section area, 

and N  is a resistance factor depending on planes covering. For shallow flow, bottom 

slope and the energy gradient are approximately equal and acceleration effects are 

negligible. Thus the momentum equation is simplified to:  

 

0SS f =      (31) 

 

The Manning’s equation can be transformed to: 

 
mAQ α=      (32) 

 

   where α  and m  are parameters related to flow geometry and 

surface roughness. For the continuity equation can be show as: 

 

q
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Q
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A
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∂
∂      (33) 

 

   where q  is lateral inflow per unit length of channel. The 

continuity equation can be changed by substitution of equation (32) into (33) shown 

as: 
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2.2.3  Baseflow Models 

 

There are 3 sub-models in baseflow models. 

 

a.  Constant, Monthly-varying Baseflow 

 

        This is the simplest baseflow model in HEC-HMS. It 

represents baseflow as a constant flow; this may vary monthly. This user-specified 

flow is added to the direct runoff computed from rainfall for each time step of the 

simulation. 

 

b.  Exponential Recession Model 

 

The HEC-HMS includes a exponential recession model to 

represent watershed baseflow (Chow et al., 1988). The recession model has been used 

often to explain the drainage from natural storage in a watershed (Linsley et al., 

1982). The relationship between the constant baseflow at time t ( tQ ) and initial 

baseflow at time zero ( 0Q ) can be presented as follows: 

 
t

t kQQ 0=      (35) 

 

where k  is an exponential decay constant. From mentioned equation above, the 

computed baseflow can be shown as a figure below.  
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Figure 5  Initial baseflow recession. 

Source: Hydrologic Engineering Center (2000) 

 

   The baseflow model is applied both at the start of simulation of 

a storm event, and later in the event as the delayed subsurface flow reaches the 

watershed channels, as illustrated in Figure 6. The threshold flow value will be 

specified by user as 0Q  to define the starting time as presented in equation (35).  

 

 
 

Figure 6  Base flow model illustration. 

Source: Hydrologic Engineering Center (2000) 
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c.  Linear Reservoir Model 

 

The linear-reservoir baseflow model is used in conjunction 

with the continuous soil-moisture accounting (SMA) model. This baseflow model 

simulates the storage and movement of subsurface flow as storage and movement of 

water through reservoirs. The reservoirs are linear: the outflow at each time step of 

the simulation is a linear function of the average storage during the time step. 

Mathematically, this is identical to the manner in which Clark’s UH model represents 

watershed runoff. The outflow from groundwater layer 1 of the SMA is inflow to one 

linear reservoir, and the outflow from groundwater layer 2 of the SMA is inflow to 

another. The outflow from the two linear reservoirs is combined to compute the total 

baseflow for the watershed. 

 

2.3  URBS Model 

 

URBS model is a distributed non-linear rainfall runoff routing model 

which can account for the spatial and temporal variation of rainfall (Malone, 2000). 

This model is based on the technical approach developed by Laurenson and Mein and 

later as the WT42 model by Shallcross (Carroll, 2004). Model development focuses 

for flood forecasting that requires good data management and be able to interface with 

external inputs and outputs. 

 

There area many features in the URBS model consisting of 1) accessing 

to hydrological data, 2) results will be interpreted in the form of text and graphics, 3) 

water levels will be calculated as well as discharges, 4) output from third party water 

balance model can be integrated easily, 5) output files that can be readily imported 

into commercial spreadsheets, 6) DHI software (Mike 11) and HEC-RAS V.3 

software can directly read output file, 7) AR&R design storms can be generated 

automatically for any zone, 8) automatic collation of design storm results for various 

ARIs and durations, 9) Monte-Carlo design storm results can be integrated to 

management routines, 10) rainfall-runoff loss model has the ability for event and 

continuous modelling, 11) there are several method to simulate hydrological 
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behaviour comprising splitting the catchment and channel routing components, 

introducing more sophisticated event loss models, development of Recovering Initial 

Loss Model, splitting of loss model into pervious and impervious components, and 

better accounting for the effects of urbanization and de-forestation, 12) sediment wash 

off and deposition modelling, 13) traffic disruption costs due to flooding, 14) on-site 

detention analysis, 15) assessment of the impacts of roofwater retention, 16) detention 

basin design routines, 17) allowance for channel transmission losses, 18) 

incorporation of simple Dam operating rules, 19) batch processing to minimise 

runtime and maximize review time and 20) hotstart capabilities for flood forecasting 

operations.  

 

  2.3.1  Runoff Routing Models 

 

URBS is a runoff-routing networked model of sub-catchments. 

There are two runoff routing models to describe catchment and channel storage 

routing behaviour. These are the URBS Basic and Split routing model. Details of both 

sub-models are described as follows. 

 

   a.  Basic Model 

 

The Basic model is similar to a simple RORB model 

(Laurenson and Mein, 1990). The assumption of the both models is that the catchment 

and channel storage for each sub-catchment are lumped together as a single non-linear 

reservoir. The storage-discharge (S-Q) relationship of conceptual non-linear reservoir 

can show by the following. 

 
m

cQkS 1=      (36) 
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where, 
1
ck  is the non-linear routing constant for a single reservoir. It is a function of 

the sub-catchment and channel storage characteristics. When 
1
ck  is replaced with 

these characteristics, the Basic model will be change by the following.  
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where, S  = catchment and channel storage (m3 h/s), α  = storage lag parameter, f  = 

reach length factor, L  = length of reach (km), U  = fraction urbanization of sub-

catchment, F  = fraction of sub-catchment forested, n  = channel roughness or 

Manning’s n, cS  = channel slope (m/m), Q  = outflow (m3/s), and m  = catchment 

non-linearity parameter. 

 

   The instability of calculation can be checked by using the sub-

catchment lag divide by the chosen time interval. The result should close to zero. The 

criterion of calculation instability can show by the following. 
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δ
     (38) 

 

   However, when instability occurs, the sizes of sub-catchment 

should be increased or the time step Tδ  should be reduced.  

 

   b.  Split Model 

 

The Split model is a runoff routing model as well as the 

Basic model, but the catchment and channel routing for each sub-catchment will be 

separated individually. When the rain fall on a sub-catchment, it is then routed 

through the catchment storage located at the centroid of the catchment to the channel 

using the catchment routing component. After that, the outflow of catchment storage 
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which is the inflow of channel storage will be routed along a reach using a non-linear 

Muskingum method to the next catchment. The catchment and channel routing 

component can be estimate using the following criteria. 

 

   1)  Catchment Routing 

 

For catchment routing criteria, the catchment storage 

represents a non-linear reservoir. Once the rain fall on the ground, it is routed through 

the non-linear reservoir using the storage-discharge relationship as shown by follows. 
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where, catchS  = catchment storage (m3h/s), β  = catchment lag parameter, A  = area of 

sub-catchment (km2), U = fraction urbanization of sub-catchment, F = fraction of 

sub-catchment forested, and m= catchment non-linearity parameter. 

 

   2)  Channel Routing 

 

Routing criteria for the channel routing is based on the non-

linear Muskingum model as shown below: 

 

( )( )ndu
c

chnl QxxQ
S

nLfS −+= 1α    (40) 

 

where, chnlS  = channel storage (m3h/s), α  = channel lag parameter, f  = reach length 

factor, L = length of reach (km), cS = channel slope (m/m), uQ = inflow at upstream 

end of reach (includes catchment inflow), dQ = outflow at downstream end of the 

channel reach (m3/s), z x = Muskingum translation parameter, n = Muskingum non-

linearity parameter (exponent), n = Manning’s n or channel roughness. 
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  2.3.2  Rainfall Runoff–Loss Models 

 

There are two rainfall loss approaches consisting of event based 

and continuous modeling in URBS model. Details of the two approaches are follows. 

 

   a.  Event Base Rainfall Loss Modelling 

 

This model requires the user to specify the initial loss, 

which is rainfall loss on the catchment before surface runoff occurrence. There are 

several loss models provided by the URBS that can be used for rainfall loss 

estimation. Details of each model are presented as: 

 

   1)  Impervious Loss Model 

 

The default of URBS model is that there is no initial loss 

for impervious area, total rainfall therefore become runoff with 100%. Recent 

research seems to suggest an initial loss of approximately 1 to 2 mm and a runoff 

proportion between 90% and 100% to be more appropriate. Boyd et al. (1993) adopt 

an effective fraction impervious to represent the directly connected impervious 

components of the catchment. A value between 0.7 and 0.9 is often used. 

 

   2)  Pervious Loss Models 

 

        There are three types of pervious loss model composing of: 

 

• Continuing Loss Model 

 

 This model assumes that there is an initial loss of il (mm) 

before any rainfall becomes effective. After this, a continuing loss rate of cl (mm) per 

hour is applied to the rainfall. 
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• Proportional Runoff Model 

 

This model assumes that there is an initial loss of il (mm) 

before any rainfall becomes effective. After this, a proportional amount of runoff ( pr , 

mm) is applied to the rainfall. 

 

• Manley-Phillips Loss Model 

 

The model assumes a loss rate based on a equation 

proposed by Manley (1974) as: 

 

( ) ktkPfi += − 2/12/12
2
1     (41) 

 

where, tf  = loss rate after time t (mm/h), t  = time (h), P  = capillary suction head 

(mm), k  = saturated loss rate (mm/h). 

 

   3) Including Spatial Variability Effects in Loss Model 

parameters 

 

 This model has an objective to account the spatial 

variability of soil loss model parameter by using a statistical distribution approach. 

The assumption is that when the rainfall infiltrate into the pervious areas that has 

reach x mm, it can expect that y fraction of the catchment is contributing to runoff. 

The model assumes a loss rate based on the following equation: 

 

( ) 1,
max

=+= ect
t

ueff fMax
F
Fff    (42) 

 

where efff  = the fraction of the effective impervious area, uf  is the fraction of the 

existing impervious area, tF  is the cumulative infiltration into the pervious area (mm) 
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after time t, and maxF  is the maximum infiltration capacity of the catchment. The 

URBS catchment infiltration model based on effective impervious areas can be shown 

as the figure below. 
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Figure 7  URBS spatial infiltration model based on effective impervious areas. 

Source: Carroll (2004) 
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where 
tot
iR  is total rainfall depth, impC  is the impervious runoff coefficient and 

per
iR  

is the pervious excess rainfall depth. 

 

24

, TTtlTt kkFkF δδδ ==     (44) 

 

The reduction coefficient Tkδ  is based on the 24 hour coefficient 24k  which is entered 

by the user. 
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   b.  Rainfall-Runoff Models / Continuous Loss Modelling 

 

        There are two methods in the URBS model to be used for 

continuous rainfall runoff modelling. The first one is recovering initial loss model 

(RILM), and another one is third party water balance model. Details of both models 

are presented below: 

 

   1)  URBS Recovering Initial Loss Models (RILM) 

 

        Since the continuing and proportional loss models as 

mentioned earlier cannot be used for recovering the initial loss. The RILM is an 

efficiency way developed for recovering the initial loss. There are two sub-models 

comprising the continuing loss and proportional loss models that can be used in this 

situation as presented details by the following.  

 

• Manley-Phillips Loss Model 

 

The initial loss is recalculated after every time step using 

the equation: 
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where iR  is the rainfall series and iclr  is the continuing loss rate series, tδ  is the 

model time interval, and f  is calibration parameter and represents the fraction of 

continuing loss deficit that contributes to the initial loss recovery. A value of f  

should be between 0.1 and 0.5 (Markar, 2001). 
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• Proportional Loss Model 

 

The initial loss is recalculated after every time step using 

the equation: 
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where iR  is the rainfall series and pr is the proportional runoff coefficient, rlr  is the 

recovering loss rate. When the rainfall rate is less than this rate, the initial loss can be 

recovered. 

 

   2)  Third party water balance models. 

 

         The AWBM model is one of a water balance model, which 

can be used for rainfall loss estimation for a given event (Boughton, 1993). The model 

generally produces un-routed runoff or rainfall excess to a location of runoff station. 

The URBS model can access these data and disaggregate the excess for each upstream 

sub-catchment based on the volume of total rainfall that fell on each sub-catchment. 

When this loss model is used you should ensure that the parameters for the event 

based loss models (i.e. either uniform, proportional or Manley-Phillips) are set so that 

there is no generated loss. 

 

2.4  SWAT Model 

 

SWAT is an acronym for Soil and Water Assessment Tool. It is a public 

domain model developed by Dr. Jeff Arnold for the United States Department of 

Agriculture – Agricultural Research Service (USDA-ARS). The development of 

model has an objective to predict the impact of watershed management practices on 

water, sediment and agricultural chemical yields in large complex watersheds. The 
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model has been developed since 1990’s, and the latest version is SWAT2000. 

Geographic Information System (GIS) is also applied to this latest version called 

AVSWAT (Arcview SWAT) to be a convenient tool for model simulation (Neitsch et 

al., 2002).  

 

For the model application, the catchment will be separated into a number 

of small sub-catchments according to their land use and soil type. There are several 

input data for each sub-basin such as climatological data, land covering and soil type, 

sub-basin and the main channel characteristic, and groundwater level.  

 

The SWAT model simulation based on hydrologic cycle can be divided 

into 2 parts comprising land phase, and routing phase. For the land phase particularly 

consider the quantity of water, sediment, nutrient and pesticide loadings of each sub-

basin before flow to the main channel, while routing phase consider the movement of 

water, sediment, etc. through the channel network to the outlet.  

 

The hydrologic cycle as simulated by SWAT is based on the water 

balance equation as follow: 
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where SWt is the final soil water content (mm), SW0 is the initial soil water content 

(mm), t is the time (days), Rday is the precipitation on day i (mm), Qsurf is the surface 

runoff on day i (mm), Ea is the evapotranspiration on day i (mm), Wseep is the 

percolation into soil on day i (mm), and Qgw is the return flow on day i (mm). 

 

SWAT model provides two methods for surface runoff estimation 

comprising the SCS curve number procedure (SCS, 1972) and the Green and Ampt 

infiltration method (1911). The theory and concept of both methods are similar to the 

details of sub model in HEC-HMS model as mention earlier. The estimated surface 

runoff will be then routed through the channel using a variable storage coefficient 



 35

method or the Muskingum routing method (Neitsch et al., 2002a). The model also 

includes controlled reservoir operation, groundwater flow model and a weather 

generator that generates daily values (precipitation, air temperature, solar radiation, 

wind speed and relative humidity) from average monthly values.  

 

For model application, the SWAT model requires a significant amount of 

data and empirical parameters for model calibration and verification (Benaman et al., 

2001). Most of the model calibration and verification were based on monthly time 

scale. Generally, the SWAT model predicts monthly flows well except during 

extreme hydrologic conditions (Shirmohammadi et al., 2001; Arnold et al., 2000; 

Rosenthal et al., 1995). Daily flow simulations were investigated in a few of the 

applications: Peterson and Hamlett (1998); Benaman et al. (2001); Varanou et al. 

(2002); Spruill et al. (2000); and King et al. (1999). In general, SWAT’s daily flow 

predictions are not as good as monthly flow predictions.  

 

3. Weather Radar 

 

Rainfall is a main source of water in the hydrological processes, accurate 

measurement and prediction of the spatial and temporal distribution of rainfall is 

therefore a basic issue in hydrology (Uijlenhoet, 2001). Weather radar, which is a 

widely used basis for measuring rainfall at fine spatial and temporal resolutions 

(Collinge and Kirby, 1987; Sun et al., 2000; Uijlenhoet, 2001; Vieux, 2003), is an 

alternative measurement used for rainfall estimation. Details of weather radar in 

rainfall estimation are presented follow. 

 

3.1  History of weather radar 

 

  Heinrich Hertz is the first physicist who discovered that the radio waves 

can be transmitted through different materials since 1887. His experiment thus 

becomes the fundamental of radio communication including RADAR. RADAR is an 

acronym for RAdio Detection And Ranging. It was developed during the Second 

World War since 1940s (Hitschfield, 1986; Doviak and Zrnic, 1992). In this situation, 
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there were many countries comprising Germany, France, Great Britain, and the 

United States of America used radar for many purposes such as ship navigation, 

airplanes guide, and enemy craft detection.  

 

  Radar system composes of two main processes which are transmitter and 

receiver. The transmitter emits the electromagnetic wave out toward a target through 

an antenna. The signal emitted from the radar is in the upper radio range of the 

microwave region of the electromagnetic spectrum. When the transmitted energy 

strikes a target, the energy is then scattered in all directions. Some portion of that 

scattered energy will return to the radar antenna. Once the receiver detects that 

backscattered radiation, the received signal will then be converted to low-frequency 

signal for further analysis (Collier, 1996).  

 

  Weather radar was developed for weather observation and forecasting 

over the last 40 years, and now it is installed in many parts of the world particularly in 

the developed countries (Collier, 1996). It is very useful for location detection of the 

precipitation and its intensity. Later, Doppler weather radar, which is another kind of 

radar, was developed in the early 1940s using Doppler technique (Doviak and Zrnic, 

1992). This system not only detects meteorological targets with greater detail, but also 

measures the velocity of the detected object. For this study, the Doppler weather radar 

will be applied to assess areal rainfall as the input data to the selected hydrologic 

model for flood and runoff estimation.  

 

3.2  Basic principles of weather radar 

 

In the beginning stage of radar development, the electromagnetic wave 

which is in the form of continuous waves (CW) was transmitted into the atmosphere 

in radar measurement process. However, there is no distinguishing between start and 

stop of the echo signal using the CW, inability for estimating the target distance from 

radar is therefore a disadvantage of using this continuous wave in the radar process. 

To improve the ability on target range measurement, G. Breit and M. A. Tuve (1925) 

discovered a new technique by emitting the signal with pulsed radio waves instead of 
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continuous wave transmission. As a result, pulse radar has been used as general radar 

in the present including Thailand.  

 

The radar system transmits a conical beam of energy in discrete pulses 

through radar antenna at approximately the speed of light ( 8103× m/s). The volume of 

each pulse of energy will determine how many targets are illuminated. This directly 

determines how much power is returned to the radar. For the receive power from a 

single target is given by: 
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where tP  is the transmitted power, rP  is the received power, G is the gain for the 

radar, λ  is the wavelength of radar, and r is the range from the radar to the target, and 

σ  is the backscattering target cross-section. In the case of multiple targets the 

equation (48) will be changed as: 
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where n  is the amount of targets. Probert-Jones (1962) developed a new radar 

equation to describe the received power of over all targets within the pulse volumes 

as: 
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where V  is the effective radar pulse volume, and ∑
vol

iσ  is the summation of each 

target backscatter cross section area over a unit pulse volume. The equation for 

estimating V  can be written as: 
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where θ  and φ  are the horizontal and vertical beam widths in degree unit, h is the 

pulse length. Substitution of equation (51) into equation (50) including the 

atmospheric attenuation denoted by “L” gives: 
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According to scattering theory, the total energy backscattered depends 

upon the number of particles within the pulse volume of the radar beam. However, the 

particles do not scatter isotropically, thus a backscattering cross-section σ  is defined 

as equivalent area required for an isotropic scatter to return to a receiver the power 

actually received. When the water drop diameter ( iD ) is small compared with the 

wavelength ⎟
⎠
⎞

⎜
⎝
⎛ <

16
1

λ
Di , the Rayleigh’s law (1871) can be applied. As a result, σ  can 

be simplified as follow: 
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where m is the complex index of refraction, and a  is electrical size ( λπ /Da = ). The 

equation (53) can be simplified by substituting λπ /Da =  and 

Kmm =+− )2/()1( 22 into the equation (53). The equation is then changed by: 
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where K  is the physical properties of the target substance. For liquid water at 10o C, 

it is equal to 0.93, and for ice particles, it is equal to 0.19 (Battan, 1973). Substitution 

of equation (54) into equation (52) gives: 
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Normally, the summation of particles diameters term (∑
vol

iD6 ) is usually 

refer as reflectivity factor (Z) in mm6/m3 unit, therefore the equation (55) can be 

rewritten as: 
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Equation (56) can be simplified to: 
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where C is radar constant depending upon wavelength, transmitted power, antenna 

gain, beam width, pulse length, sum of all losses, and range of target. From the above 

equation, if we know backscattering power and the other variables, we can calculate 

the reflectivity factor. However, the calculated reflectivity factor (Z) is in mm6/m3 

unit, which varies across many orders of magnitudes. It is therefore usually more 

convenient to express Z in dBZ unit using the following equation: 

 

ZdBZ 10log10=     (58) 
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3.3  Doppler processing 

 

       When the radar emit the frequency ( 0f ) strikes a moving target, the 

returned frequency to the radar antenna is shifted. This situation is known as the 

Doppler effect. The Doppler shift frequency ( Df ) returned to the antenna can be 

written as: 

 

λ
VfD

2
=      (59) 

 

where V is the velocity of the target in direction of radar transmission.  

 

 According to Doppler effect hypothesis, if the target is moving towards 

the radar, the received frequency can be calculate from Dff +0 . On the other hand, if 

the object is moving away from the radar, the received frequency can be calculate 

from Dff −0 . When Df  is measured, the velocity of the target can be calculated. 

 

3.4  Range ambiguities 

 

Radar systems radiate each pulse during transmits time. It waits for 

returning echoes from the previous pulse, and then radiates a next pulse, as shown in 

Figure 8. The number of pulses radiated in one second is called the pulse-repetition 

frequency (PRF), or the pulse-repetition rate (PRR). The time between the beginning 

of one pulse and the start of the next pulse is called pulse repetition time (PRT) and is 

equal to the reciprocal of PRF.  
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Figure 8  Radar pulse relationships. 

 

 The PRF of the radar is important for maximum range determination. Any 

echoes which return after the transmission of the next pulse, will give a misleading 

range on the radar screen. This incorrect range is called ambiguous range. The 

maximum unambiguous range ( aR ) defined by PRF for given radar system can be 

determined by the following formula: 

 

PRF
cRa 2

=      (60) 

 

where smc /10998.2 8×=  is the speed of light.  

 

3.5 Relation between radar reflectivity, rainfall rate and raindrop size 

distribution 

 

The weather radar is a widely used basis for measuring rainfall at fine 

spatial and temporal resolutions (Collinge and Kirby 1987; Sun et al. 2000; Uijlenhoet 

2001; Vieux 2003). Nevertheless, the weather radar does not measure rainfall directly, 

inferring the rainfall based on the power of electromagnetic waves backscattered by 

raindrops in the atmosphere and intercepted by the radar. This backscattered power is 

represented as the radar reflectivity (Z), and related to a rainfall rate (R) through a 

power law relationship Z = ARb, referred to as the Z-R relationship. This section aims 

to explain the fundamental reason of this empirical power law relationship.  
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The reflectivity in mm6/m3 unit is related to the raindrop size distribution 

in the radar sample volume as: (Atlas, 1964; Battan, 1973) 

 

∫
∞

=
0

6 )( dDDNDZ V      (61) 

 

where dDDNV )(  (the subscript V standing for volume) represents the mean number 

of raindrops with equivalent spherical diameters between D and D + dD (mm) present 

per unit volume of air in unit of 1/m3. )(DNV  represents raindrop size distribution in 

1/mm m3 unit. From the equation (61), it demonstrates that the Z is a purely 

meteorological quantity that is independent of any radar property (Uijlenhoet, 2001). 

While the rainfall rate (mm/h) is also computed by using the raindrop size distribution 

relationship according to.  
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where )(Dv  is the relationship between the raindrop fall speed in still air v  (m/s) and 

its diameter D (mm). It can be approximated using a power law as presented below: 

 
γν cDD =)(      (63) 

 

Atlas and Ulbrich (1977) suggested that the coefficient c and γ are 3.778 (ms-1) and 

0.67, respectively.  

 

Marshall and Palmer (1948) proposed a simple negative exponential raindrop 

size distribution )(DNV  as shown in equation (64). This equation is widely used to 

compute rainfall rates from reflectivity measurements (Doviak and Zrnic, 1992). 

 
D

V eNDN Λ−= 0)(      (64) 
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where 0N  is a shorthand notation for )0(VN , and Λ  is the slope of the )(DNV  curve 

on a semilogarithmic plot. Both parameters are constant for any rainfall rate. 0N = 

8,000 1/mm m3, and 21.01.4 −=Λ R  (Marshall and Palmer, 1948). 

 

Besides, raindrop size distribution can be written in the form of )(DNV , it can 

be written in the form of )(DN A  (mm-1 m-2 s-1) as well. )()( DdDN A  (m-2 s-1) is 

defined as the mean number of raindrops in a particular diameter interval arriving at a 

surface per unit area and per unit time (Uijlenhoet and Stricker, 1999). If the effects of 

wind, turbulence and raindrop interaction are neglected, the relationship between 

)(DN A  and )(DNV  in stationary rainfall becomes: 

 

)()()( DNDDN VA ν=      (65) 

and 

)()()( 1 DNDDN AV
−=ν     (66) 

 

 By substituting the Equation (63) and (64) into the Equation (65) into, we 

obtained 

 
D
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From consideration of the Equations (61), (62), (65), and (66), the definitions 

of the radar reflectivity factor Z and the rainfall rate R can be rewritten as: 
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 Hence, Z is most naturally defined in terms of )(DNV  and R is in terms of 

)(DN A . This is because Z is a state variable an R is a flux variable (Uijlenhoet and 

Stricker, 1999).  

 

 Because reflectivity factor (Z) and rainfall rate (R) are related to the raindrop 

size distribution, it is possible to derive a power law relationship between Z and R 

(Marshall, 1969; Battan, 1973; Wilson and Brandes, 1979; Austin, 1987; Rinehart, 

1991; Uijlenhoet, 2001) as presented below. 

 
bARZ =       (70) 

 

where A and b are model parameters which vary from one location to the next and 

form one season to the next. This power law equation has been common practice to 

convert measured radar reflectivity into rainfall rate (Chumchean, 2004) 
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MATERIALS AND METHODS 
 

Materials 

 

1. A laptop computer 

2. Topographic map (scale 1:250,000 and 1:50,000) of the upper Ping river 

basin and the surrounding areas 

3. Rain gauge rainfall data, runoff data, and radar reflectivity data in the 

upper Ping river basin 

4. Rain gauge rainfall data, and radar reflectivity data in Bangkok 

5. Rain gauge rainfall data, and radar reflectivity data in Sydney and 

Brisbane, Australia 

6. Microsoft office, version 2003 

7. URBS model 

8. NAM model 

9. Microsoft visual basic, version 6.0 

10. ArcView GIS software, version 3.3 

 

Methods 

 

 Based on the objectives of this thesis, methodologies were separated into 6 

sections. Data collection used in this study is presented in section 1. The next section 

presents the methodology for selecting a suitable hydrologic model for flood and 

runoff estimation in the upper Ping river basin. The method for testing the selected 

model performance for flood estimation in gauged catchment in the study area, and 

the technique for the selected model application on the ungauged catchment were 

presented in section 3. Section 4 presents the calibration of a climatological Z-R 

relationship for the upper Ping river basin. Section 5 describes the method for 

studying an effect of rain-gauge temporal resolution on the specification of a Z-R 

relationship. Application of a simple scaling hypothesis for constructing a scaling 

transformation equation to ascertain the A parameters at finer temporal resolution was 

also described in this section. The last section presents the methodologies for 
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estimating different types of rainfall (daily rain gauge, daily radar, and hourly radar 

rainfall) to be used as input data to the selected hydrologic model for different runoff 

stations in the upper Ping river basin. Details of each section are described as in the 

followings. 

 

1.  Data collection 

 

 1.1  Rain gauge rainfall data 

 

 Rain gauge rainfall data from the networks located in the upper Ping river 

basin and Bangkok, as well as in Sydney and Brisbane, Australia were collected for 

this study. Details of data collection for each location are explained below. 

 

 1)  The upper Ping river basin 

 

   In this study, rain gauge rainfall from 80 rainfall stations located in the 

upper Ping river basin and the surroundings (see Figure 9) during 1952 until 2005 

were collected. Five automatic rain gauges providing continuous rainfall data are 

owned and operated by the Thailand Meteorological Department (TMD), whereas the 

remaining 46 and 29 stations owned and operated by the TMD and the Royal 

Irrigation Department (RID), respectively, are non-automatic stations providing daily 

rainfall.  

 

   The collected rain gauge rainfall data will be used for two 

applications: 1) used as the input data to the selected hydrological model for flood 

estimation at runoff stations located in the upper Ping river basin, 2) used in 

climatological Z-R calibration process for the upper Ping river basin. 
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Figure 9  Locations of rain gauges and runoff stations in the upper Ping river basin 

and surroundings. 
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  2)  Bangkok 

 

       Rain gauge rainfall data used in this study were obtained from the 

network of 61 continuous tipping-bucket gauge stations located within 100 km from 

the Pasicharoen radar as illustrated in Figure 10. The rain gauges are owned and 

operated by the Bangkok Metropolitan Administration (BMA).  

 

 

 

Figure 10  Locations of tipping-bucket rain gauges within the Pasicharoen radar 

radius. 
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  3)  Sydney 

 

       Rain gauge rainfall data used in this study were obtained from the 

network of 227 continuous tipping-bucket gauge stations located within 100 km from 

the Kurnell radar as illustrated in Figure 11. The rain gauges are owned and operated 

the Australian Bureau of Meteorology and the Sydney Water Corporation.  

 

 

 

Figure 11  Locations of tipping-bucket rain gauges within the Kurnell radar radius. 

 

50 km 100 km 
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  4)  Brisbane 

 

       Rain gauge rainfall data used in this study were obtained from the 

network of 202 continuous tipping-bucket gauge stations located within 100 km from 

the Mt Stapylton radar as illustrated in Figure 12. The rain gauges are owned and 

operated the Australian Bureau of Meteorology and the Sydney Water Corporation.  

 

 

 

Figure 12  Locations of tipping-bucket rain gauges within the Mt Stapylton radar 

radius. 

 

50 km 100 km 
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 1.2  Runoff data 

 

        Thirty six runoff stations situated in the upper Ping river basin as 

illustrated in the Figure 9 were collected in this study. Two stations are floating 

gauges, while the rest 34 stations are vertical staff gauges. All runoff stations are 

owned and operated by the RID. The runoff data during 1952 until 2005 were 

collected for model calibration and verification purpose.  

 

1.3  Radar reflectivity data 

 

        Radar reflectivity data from the Omkoi, the Pasicharoen, the Kurnell, and 

the Mt Stapylton radars located in Chiang Mai (represent the upper Ping river basin), 

Bangkok, Sydney, and Brisbane, respectively were collected for this study. Details of 

data collection for each location are explained below. 

 

 1)  The upper Ping river basin 

 

   In the upper Ping river basin, two departments – the Thai 

Meteorological Department (TMD) and the Bureau of Royal Rainmaking and 

Agricultural Aviation (BRRAA) - collect reflectivity data at Amphor Muang Chiang 

Mai and Amphor Omkoi, respectively as illustrated in Figure 13. The reflectivity data 

from the Omkoi radar collected by the BRRAA is chosen for an investigation of the 

Z-R relationship for the following reasons.  

 

   Firstly, the BRRAA uses the S-band Doppler radar, whereas the C-

band radar is used by the TMD. These different kinds of radar transmit radiation at 

different wavelengths, which is highly related to beam attenuation error. The shorter 

wavelengths are more attenuated in power by the vibration of particles in the 

atmosphere and absorbed by water than the longer wavelength (Hildebrand, 1978). 

Attenuation is therefore a severe problem for the X-band radar, which has quite short 

wave length of radiation of 2.8 cm. It can also be a problem for the C-band radar with 

the wave length of 5.5 cm. However it is not a problem for the S-band radar, which 
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has the longer wave length of 10.7 cm (Hitschfeld and Bordan, 1954; Delrieu et al., 

2000). 

 

   Secondly, the BRRAA has collected the reflectivity data as volume 

scans, which are derived at 6-min interval using radar beam with different elevation 

angles (0.6, 1.4, and 2.2). The reflectivity products with a maximum range of 240 km 

provided by the BRRAA are in the form of PseudoCAPPI. This PseudoCAPPI 

reflectivity is the data obtained from the 2.5-km CAPPI (Constant Altitude Plan 

Position Indicator) and PPI (Plan Position Indicator) products. At a constant altitude 

of 2.5 km, the data collected within the radar range of approximately 135 km is 

considered as the CAPPI data, and the data beyond the range of 135 km is produced 

from the lowest PPI (0.6 degree). On the other hand, the TMD has collected hourly 

PPI which is extracted from the raw reflectivity data from the beam at the elevation 

angle of 0.75 degree.  

 

   Lastly, the data collected by the BRRAA are within smaller temporal 

resolutions of around 5 to 6 minutes compared to the TMD’s data that are within one 

hour resolution. The data collected by the BRRAA has higher temporal resolution 

than the data collected by the TMD.  

 

   The S-band Doppler radar at Omkoi station transmits the radiation 

with the wave length of 10.7 cm, and produces a beam width of 1.2 degrees and a 240 

km maximum range. The PseudoCAPPI reflectivity products with the spatial 

resolution of 1 km2 for wet season (May - September) in 2003 to 2005 were collected 

for radar rainfall estimation in the upper Ping river basin because of its accuracy and 

the suitability of the rainfall data within the same periods as the reflectivity data. 
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Figure 13  Location of weather radar belonged to the BRRAA and the TMD coving 

the upper Ping river basin. 
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  2)  Bangkok 

 

      For the Z-R calibration in Bangkok area, one dataset of the 0.5o PPI 

(Plan Position Indicator) reflectivity data at Pasicharoen radar and 15-minute rain 

gauge data obtained from a 61 rain gauge network (see Figure 10) during June 2005–

October 2006 were used. The Pasicharoen radar is a C-band Minimax Doppler radar 

which transmits the radiation with the wave length of 5.4 cm and produces a beam 

width of 0.90o. The radar reflectivity data achieved from Bangkok station are in 

Cartesian grid with 240 km ×  240 km extent with 1 km2 spatial resolution and 10 

minute temporal resolution.   

 

  3)  Sydney 

 

     Three datasets of the 1.5-km CAPPI (Constant Altitude Plan 

Position Indicator) reflectivity data at the Kurnell radar and hourly rain gauge data 

obtained from a 227 rain gauge network (see Figure 11) during November 2000 – 

April 2001, August – December 2006, and January – May 2007 were used for the Z-R 

development for the Sydney area. The Kurnell radar is a C-band Doppler radar which 

transmits the radiation with the wave length of 5.3 cm and produces a beam width of 

0.94o. The radar reflectivity data achieved from Sydney station are in Cartesian grid 

with 256 km ×  256 km extent with 1 km2 spatial resolution and 10 minutes temporal 

resolution. 

 

  4)  Brisbane 

 

     One dataset of the 1.5-km CAPPI (Constant Altitude Plan Position 

Indicator) reflectivity data at the Mt Stapylton radar and hourly rain gauge data 

obtained from a 202 rain gauge network (see Figure 12) during November 2006–

March 2007 were used for the Z-R development for the Brisbane area. The Mt 

Stapylton is a S-band Doppler radar which transmits the radiation with the wave 
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length of 10.7 cm and produces a beam width of 1o. The radar reflectivity data 

achieved from Brisbane station are in Cartesian grid with 256 km ×  256 km extent 

with 1 km2 spatial resolution and 10 minutes temporal resolution. 

 

2. Hydrologic model selection 

 

 In this section, the most suitable hydrologic model for flood estimation in the 

upper Ping river basin will be chosen by considering the theory and the concepts of 

the four hydrologic models (NAM, HEC-HMS, URBS, and SWAT models) as 

presented in section 2 of the literature review. Methodology for hydrologic model 

selection is shown in the following. 

 

 2.1  Model selection criteria  

 

        To select a suitable hydrologic model for flood estimation in this study, 

the selection criteria is necessary to be established. The order of the selection criteria 

which are ranked according to its importance are presented below. 

 

 1)  The model should be a public domain model or low cost model. 

 

 2)  Model input and output facilities should be easily to carry out. 

 

 3)  The model can be applied not only to a specific river basin but also to 

other river basins. Model users can change model parameters to be suited with their 

study areas. The recommendation for the suitable parameters to be applied for 

different basin characteristics would be benefit for model usages. 

 

 4) The model has an ability to simulate both single and continuous flood 

events. 

 

 5)  Concept, theory, user manual and source code of the models can be 

obtained.  
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 6)  Input data needed for model applications are available for Thailand 

river basins. 

 

 2.2  Models comparison  

 

        Four hydrological models namely NAM, HEC-HMS, URBS, and SWAT 

models (see the details of their theory and concept in the section of “Hydrological 

models” in the literature review) were compared by considering the selection criteria 

as presented in Table 1. The most suitable hydrologic model will be chosen for flood 

estimation in this study.  

 

 2.3  Model selection 

 

        From Table 1, it can be seen that these four models have their own 

advantages and disadvantages on each selection criteria. To be able to choose the 

most appropriate model for this study, scores need to be given for a particular 

criterion of each model. The model which obtains the maximum score will be chosen 

for further investigation. Score evaluation is given as in the followings. 

 

 1) Since there are six selection criteria ranking according to its 

importance, weighing factors 6 to 1 are given to the selection orders 1 to 6, 

respectively.  

 

 2) For each selection criterion, the scores 0, 1, and 2 are given according 

to its low, medium, and high performance, respectively. Results of the rated score are 

presented in Table 2. 
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Table 1  Model ability according to the selection criteria. 

 

Selection 
criterion 

NAM model HEC-HMS 
model 

URBS model SWAT model 

1. The model 
should be a 
public domain 
model or low cost 
model 

A high cost 
model 
(approximately 
200,000 baht) 

A public 
domain model 

A low cost 
model 
(approximately 
30,000 baht) 

A public 
domain model 

2. Model input 
and output 
facilities should 
be easily to carry 
out. 

The NAM 
model provides 
a friendly 
graphic user 
interface for 
ease of use. 
User has 
alternatives to 
complete all 
input data via 
the graphic 
user or to 
prepare the 
data in the form 
of text file, 
which is very 
easily to be 
handle and it 
can be later 
imported to the 
model. For the 
output display, 
flood 
estimation 
result will be 
presented as a 
time series plot 
via graphic 
interface. The 
user can also 
export the 
output as text 
file for further 
analysis. 

The HEC-HMS 
model 
comprise a 
graphical user 
interface, 
integrated 
hydrologic 
analysis 
components, 
data storage 
system (DSS) 
and 
management 
capabilities, 
and graphics 
and reporting 
facilities (US-
ACE, 2001). 
DSS can be 
used to prepare 
time series 
data, but it is 
more 
complicated 
than using the 
text file. 
Thorough 
investigation of 
using the HEC-
DSS model is 
therefore 
necessary. For 
the output 
display, the 
result of flood 
hydrograph is 
presented as a 
time series plot 
or table via 
graphic 
interface. 

There is no 
user interface 
available for 
preparing the 
input data for 
the usage of the 
URBS model. 
All input data, 
which mostly 
are the time 
series data, 
need to be 
prepared in the 
form of text 
file. Locations 
of input data 
are specified 
via user 
interface or 
batch file, 
which is ready 
to be executed. 
The output data 
are displayed 
as time series 
plot and table 
via user 
interface. Text 
file of the 
output data are 
also available, 
and can easily 
be exported to 
be used as the 
input data for 
some 
hydrodynamic 
models such as 
the MIKE 11 
and HEC-RAS 
models. 

Since the 
SWAT model 
was developed 
using the 
Fortran code, 
the input and 
output data are 
necessary to be 
prepared in the 
form of text 
files. Presently, 
the model has 
an ability to 
link to the 
ArcView GIS 
software using 
the extension 
AVSWAT-
2000 for 
arranging the 
input and 
output data. 
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Table 1  (Continued) 

 

Selection 
criterion 

NAM model HEC-HMS 
model 

URBS model SWAT model 

3. The model can 
be applied not 
only to a specific 
river basin but 
also to other river 
basins. Model 
users can change 
model parameters 
to be suited with 
their study areas.  
The 
recommendation 
for the suitable 
parameters to be 
applied for 
different basin 
characteristics 
would be benefit 
for model usages. 

The model can 
be applied for 
general river 
basin using 
model 
calibration and 
verification 
techniques to 
ascertain the 
most suitable 
set of model 
parameters for 
a particular 
basin. Ranges 
of the suitable 
parameters are 
also provided 
in the user 
manual. 
However, the 
model 
parameters can 
be out of the 
recommended 
ranges. 

There are 
several sub-
models for 
flood 
estimation 
available in the 
HEC-HMS 
model. Some 
sub-models 
cannot be 
applied for 
general river 
basin using 
model 
calibration and 
verification 
techniques. 
This is because 
these sub-
models include 
empirical 
parameters, 
which cannot 
be changed by 
user. Examples 
of these sub-
models are as 
follows. In the 
SCS unit 
hydrograph 
(UH) model, 
the 
dimensionless 
unit 
hydrograph - 
which was 
synthesized 
using the data 
in USA – 
cannot be 
changed to suit 
the study area. 
In the SCS 
hypothetical 
storm model, 
there are four - 

The model can 
be applied for 
general river 
basin by model 
calibration and 
verification 
processes to 
ascertain the 
most suitable 
set of model 
parameters for 
a particular 
basin. Ranges 
of the suitable 
parameters are 
also provided 
in the user 
manual but can 
be out of the 
recommended 
ranges. 
However, the 
URBS model 
can be 
simplified and 
the number of 
model 
parameters will 
be reduced to 
ease the model 
application. 

Surface runoff 
volume in the 
SWAT model 
is computed 
using a 
modification of 
the SCS curve 
number method 
(USDA Soil 
Conservation 
Service, 1972) 
or the Green & 
Ampt 
infiltration 
method (Green 
and Ampt, 
1911). For the 
curve number 
method, CN 
value is the 
main parameter 
which can be 
estimated as a 
function of 
land use, soil 
type, and 
antecedent 
watershed 
moisture, using 
tables 
published by 
the SCS. For 
the Green & 
Ampt method, 
loss rate can be 
calculated as a 
function of the 
wetting front 
matric potential 
and effective 
hydraulic 
conductivity. 
Both 
parameters can 
be estimated as 
a function of - 
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Table 1  (Continued) 

 

Selection 
criterion 

NAM model HEC-HMS 
model 

URBS model SWAT model 

3. (Continued)  - types of storm 
distribution that 
can be chosen 
by the user. 
However, they 
are not covered 
all storm types 
occurring 
around the 
world. The 
application of 
these sub-
models would 
cause 
significant 
errors in flood 
estimation. 

 - soil type 
using a table 
proposed by 
Rawls, et al. 
(1982). The 
SWAT model 
allow user to 
change those 
parameters to 
be suited to the 
study area. 
Since land use 
and soil type 
are important 
information for 
model 
application, 
unfortunately 
these data are 
not easily 
measured from 
a general 
topography 
map. 

4. The model has 
an ability to 
simulate both 
single and 
continuous flood 
events. 

The NAM 
model was 
designed to 
simulate the 
components of 
surface runoff 
comprising the 
overland flow, 
interflow and 
baseflow. All 
flow 
components 
based on 
physical 
structures and 
semi-empirical 
equations can 
continuously be 
connected and 
transported to 
each others. As 
a result, the - 

The HEC-HMS 
model was 
designed to 
simulate both 
single and 
continuous 
flood events 
over a long 
period of time. 
The model 
consists of 4 
model groups 
(24 sub-
models), which 
are runoff-
volume 
models, direct-
runoff models, 
baseflow 
models, and 
routing models, 
to be used for - 

The URBS 
model has an 
ability to 
simulate both 
single and 
continuous 
flood events 
depending 
upon the loss 
model. For the 
single loss 
model, an 
initial loss will 
first be 
specified, and a 
continuing loss 
rate (cl) or a 
proportional 
amount of 
runoff (pr) will 
thereafter be 
applied to the - 

The SWAT 
model provides 
two methods 
for calculating 
the rainfall loss 
rate comprising 
the SCS curve 
number 
procedure 
(SCS, 1972) 
and the Green 
and Ampt 
infiltration 
method (1911).  
These two 
techniques are 
however 
appropriate for 
single flood 
event (HEC-
HMS). An 
application of - 
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Table 1  (Continued) 

 

Selection 
criterion 

NAM model HEC-HMS 
model 

URBS model SWAT model 

4. (Continued) - NAM model 
can reasonably 
be used to 
simulate both 
single and 
continuous 
flood events. 

- the 
calculation of 
rainfall loss 
rate, rainfall-
runoff 
transformation, 
baseflow 
estimation, and 
flow routing, 
respectively. 
Single and 
continuous 
flood events 
can be 
distinguished 
using 7 sub-
models of the 
rainfall loss 
rate which are 
available in the 
runoff-volume 
models. Within 
these sub-
models, there 
are 3 sub-
models (deficit 
and constant 
rate, Soil 
Moisture 
Accounting 
(SMA), 
Gridded SMA 
models) can be 
used for 
calculating the 
continuous 
flood events. 
Users can 
choose the 
appropriate 
method to 
calculate flood 
events 
according to 
their needs. 

- rainfall. For 
the continuous 
simulation, the 
initial loss can 
be recovered if 
there is no 
rainfall for a 
long period. 

- the model for 
continuous 
flood events 
would possibly 
contains 
significant 
errors. 
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Table 1  (Continued) 

 

Selection 
criterion 

NAM model HEC-HMS 
model 

URBS model SWAT model 

5. Concept, 
theory, user 
manual and 
source code of 
the models can be 
obtained. 

Theory and 
concept of the 
model are 
presented in the 
user manual, 
but the source 
code of the 
model is not 
available. 

Theory, 
concept, user 
manual, and 
source code for 
most of sub-
models of the 
HEC-HMS 
model are 
available via 
internet. 
Further details 
can be obtained 
by direct 
contact to their 
website. 

Theory and 
concept of the 
model are 
presented in the 
user manual, 
but the source 
code of the 
model is not 
available. The 
problems occur 
while using the 
model can be 
directly 
consulted to the 
developer. 

Theory, 
concept, user 
manual, and 
source code of 
the model are 
available via 
internet. 
Further details 
can be obtained 
by direct 
contact to their 
website. 

6. Input data 
needed for model 
applications are 
available for 
Thailand river 
basins. 

Data needed 
for model 
applications 
comprise 
rainfall, runoff, 
and 
evaporation 
data which are 
available in 
Thailand river 
basins. 

Data needed 
for model 
applications 
comprise 
rainfall, runoff, 
and 
evaporation 
data which are 
available in 
Thailand river 
basins. 

Data needed 
for model 
applications 
comprise 
rainfall, runoff, 
rating curve, 
and 
evaporation 
data which are 
available in 
Thailand river 
basins. 

Data needed 
for model 
applications 
comprise 
rainfall, runoff, 
evaporation, 
climate, land 
used, and soil 
type data which 
are available in 
Thailand river 
basins. 

 

Table 2  Rated score for each model and selection criterion. 

 
Selection Weighing  Score Score ×  weighing factor 
Criterion  
Number 

factor NAM 
model 

HEC-
HMS 
model 

URBS 
model 

SWAT 
model 

NAM 
model 

HEC-
HMS 
model 

URBS 
model 

SWAT 
model 

1 6 0 2 1 2 0 12 6 12 
2 5 2 1 2 1 10 5 10 5 
3 4 2 1 2 2 8 4 8 8 
4 3 2 2 2 1 6 6 6 3 
5 2 1 2 2 2 2 4 4 4 
6 1 2 2 2 2 2 2 2 2 

 

 The URBS model has shown the full score for five out of six criteria, while 

other three models receive the full score for four out of six criteria. With a 
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consideration of weighting factors, the URBS model has shown slightly advantage 

over other three models. Additionally, two experts on the URBS model application 

had visited the Water Resources Department for two weeks during the early stage of 

this research, therefore the URBS was finally chosen for further application in this 

study. 

 

3. Testing the URBS model performance and extending its application to the 

ungauged catchments 

 

An effectiveness of the URBS model performance can be evaluated by 

calibrating the model on runoff stations in the upper Ping river basin. To be more 

confident on applying the URBS model to the study area, the URBS model 

performance will also be compared to the NAM model performance. This is because 

the NAM model, a sub-module of the MIKE 11 model package, is one of the 

commercial hydrologic models that has been accepted worldwide (Knudsen et al., 

1986; Refsgaard and Knudsen, 1996; Madsen 2000) and also generally applied for 

many river basins in Thailand for runoff and flood assessment (Poomthaisong, 1997; 

Tingsanchali and Gautam, 2000; Pawattana et al., 2007). The URBS and NAM 

models were setup for different runoff stations in the upper Ping river basin using 

gauge rainfall as the input data. The performance comparison between the URBS and 

the NAM model were thereafter verified at some gauging stations in the upper Ping 

river basin.  

 

Since the URBS model can only be applied on the gauged catchment - which 

model parameters can be specified by the calibration and verification processes - the 

potential of the URBS model application on the ungauged catchment for the upper 

Ping river basin was extended in this study. After the URBS model was applied for 

different runoff stations in the upper Ping river basin, the ungauged relationship 

between model parameters and catchment characteristics will be constructed to be 

used for ungauged catchment in the basin. 
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 3.1  Hydrological model description 

 

        3.1.1 URBS model 

 

        In this study, catchment and channel storage as shown in the Eqs. (39) and 

(40), respectively, were simplified by setting the afforestation factor, F, and 

urbanization factor, U, to be zero for the catchment routing component. The channel 

routing component, Muskingum non-linearity parameters ( 1n ) and the reach length 

factor (f) are set to be 1, while Manning’s n and channel slope cS  were neglected. The 

simplified equations are then: 

 
m

catch QAS β=     (71) 

 

and 

( )( )duchnl QxxQLS −+= 1α    (72) 

 

        Excess rainfall estimation is crucial for the rainfall - runoff modeling 

(Malone and Cordery, 1989). For the URBS model, excess rainfall can be assessed 

using different rainfall loss models (see more details in the section “Hydrologic 

model” in the literature review). In this study, the initial loss - proportional runoff 

model (IL-PR) coupled with the spatial variability parameters loss model were 

chosen. The assumption of IL-PR model is that an initial loss ( il , mm) will be 

deducted from rainfall following by the proportional loss ( pr , mm) and then excess 

rainfall will occur. Spatial variability of infiltration was also accounted using the Eqs. 

(42) and (43). 

 

        As the URBS model equations have been simplified, there are only 7 

model parameters necessary for the model application. These parameters are: 1) the 

channel lag parameter (α ), 2) the catchment non-linearity parameter (m), 3) the 

Muskingum translation parameter (x), 4) the catchment lag parameter (β ), 5) the 

initial loss (IL), 6) the proportional amount of runoff (PR), and 7) the maximum 
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infiltration rate (IF). The first four parameters are related to runoff routing behavior 

and the last three parameters are related to rainfall loss estimation. However, m and x 

parameters do normally not vary significantly from 0.8 and 0.3, respectively (Malone, 

2000; Jordan et al., 2004). In this study, the values of the x and m parameters were 

therefore fixed at 0.8 and 0.3, respectively, for flood investigation. The remaining five 

model parameters are determined during the calibration process. For model 

application, each particular gauged basin needs to be divided into sub-catchments of 

at least 5 sub-catchments (Carroll, 2004). Each sub-catchment should have a similar 

size and also similar catchment characteristics. 

 

        3.1.2  NAM model  

 

       According to model description as presented in the section 

“Hydrologic models” in the literature review, there are 8 parameters needed for the 

NAM model application comprising: 1) the maximum water content in surface 

storage (Umax), 2) the maximum water content in root zone storage (Lmax), 3) the 

overland flow runoff coefficient (CQOF), 4) the root zone threshold value for 

overland flow (TOF), 5) the time constant for routing overland flow (CK1), 6) the time 

constant for routing interflow (CK2), 7) the root zone threshold value for groundwater 

recharge (TG), and 8) the time constant for routing baseflow (CKBF). For model 

calibration, the Umax value is suggested to be ten percent of the Lmax value, and the 

values of CK1 and CK2 are the same. Therefore six parameters have to be identified 

during the calibration process.  

 

 3.2  Method for comparing the URBS and NAM models for flood estimation  

 

        In the upper Ping river basin, there are 80 rainfall stations and 44 runoff 

stations located in the upper Ping river basin and its surroundings, but only 19 rainfall 

stations and 15 runoff stations have sufficient data available for this study. These 

stations are non-automatic stations with only daily data available for model 

application. Locations of the rainfall and runoff stations used in this study are shown 

in Figure 14.  
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 Table 3 presents the number of rainfall stations and flood events used in 

hydrograph simulation for each of the 15 runoff stations in the upper Ping river basin. 

Note that, the flood events used in the analysis were selected to cover medium to 

severe levels of flooding with the respective annual probabilities of flood exceedence 

being 40 and 10% suggested by Paiva (1993). For the URBS model application, each 

runoff station needs to be separated into smaller sub-catchment as described earlier. 

Numbers of sub-catchment for each runoff station are also shown in Table 3.  

 

 Only the first 5 runoff stations namely P.20, P.4A, P.28, P.21, and P.71 

presented in Table 3 were used in model comparison purpose. Model calibration and 

verification processes were carried out to define the most suitable set of control 

parameters of each model and each station. In these processes, goodness of fit 

between the observed and calculated discharges was evaluated using three statistical 

measures: the correlation coefficient (Chapra and Canale, 2002), root mean square 

error (Madsen, 2000), and the efficiency index or Nash-Sutcliffe criterion (Nash and 

Sutcliffe, 1970; Krause et al., 2005). Equations used to calculate these statistical 

measures are expressed in Table 4.  
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Table 3  Data used for the URBS and the NAM model application. 

 

Runoff 

Catchment Catchment Amount 

of 

Number 

of 

Number Range of 

probability 

station  

code 

Name Area 

(km2) 

Sub-

catchment 

rainfall 

station 

of flood 

event 

of  

exceedance 

(%) 

P.20 Upper Ping River 1,339 25 2 5 8 – 38 

P.4A Nam Mae Tang 1,939 30 3 5 14 – 40 
P.28 Nam Mae Ngat 1,267 27 3 5 6 – 40 
P.21 Nam Mae Rim 510 5 3 4 10 – 39 
P.71 Nam Mae Ngan 1,727 15 2 5 11 – 40 
P.1 Ping River section 2 1,112 15 4 6 15 – 40 

P.77 Nam Mae Kuang 544 5 1 2 30 – 40 
P.24A Nam Mae Klang 454 5 2 4 28 – 39 
P.29 Nam Mae Li 1,966 14 2 2 15 – 26 
P.76 Nam Mae Li 1,543 11 2 2 20 – 40 
P.73 Ping River section 3 2,242 14 8 3 14 – 40 
P.5 Nam Mae Kuang 1,777 15 5 3 21 – 40 

P.14 Nam Mae Jam 3,853 25 4 3 8 – 39 
P.75 Ping River section 3 771 6 3 3 15 – 40 
P.67 Ping River section 3 498 13 4 3 20 – 40 
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Figure 14  Locations of rainfall and runoff stations used for the analysis of testing the 

URBS model performance and extending its application to the ungauged 

catchments. 



 68

Table 4  Statistical measures used to identify the goodness of fit of flood discharges. 

 

Statistical Measures 
Equations 

Correlation Coefficient (r) 
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          where, miQ  is daily the observed discharge at time i, mQ  is an average 

value of observed discharge, ciQ  is the calculated discharge at time i, cQ  is the 

average value of the calculated discharge, N  is the number of data points. The best fit 

between the calculated and observed discharges using these parameters occurs when 

the correlation coefficient (r) approaches 1, the root mean square error (RMSE) 

approaches zero, and the efficiency index (EI) approaches 100 percent.  

 

3.3  Method for model application for the ungauged catchments in the upper 

Ping river basin 

 

         Model parameters for gauged catchment can be achieved by the best fit 

between the observed and calculated discharges at a particular runoff station. 

Unfortunately most of the catchments are ungauged including the upper Ping river 

basin. To be able to apply the URBS model to the ungauged catchments in the upper 

Ping river basin, the ungauged relationships between model parameters and catchment 

characteristics, which can be measured from topographical maps, were formulated in 

this study. In this analysis, the URBS model will be further used to find model 
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parameters suitable for other 6 runoff stations namely P.1, P.77, P.24A, P.29, P.76, 

and P.73 presented in Table 3. Model parameters of the first 11 runoff stations shown 

in Table 3 and their catchment characteristics will be used to formulate the best 

ungauged relationships for the upper Ping river basin.  

 

 To test an effectiveness of the proposed ungauged relationships, these 

equations will be then used to calculate the model parameters of the last 4 runoff 

stations namely P.5, P.14, P.75, and P.67, which has not been applied in formulating 

the ungauged relationships process and also presented in the Table 3. The model 

parameters estimated using the gauged catchment approach (obtained by the best fit 

between the observed and calculated hydrograph) at the 4 runoff stations were also 

carried out to compare with the parameters obtained from the ungauged relationships. 

The results of flood estimation at the last 4 runoff stations calculated using the 

ungauged and gauged catchment approaches were later compared to the observed 

flood hydrograph to show the performance of ungauged catchment approach. If the 

estimated flood hydrographs attained from the ungauged and gauged catchment 

approaches are not significantly different with acceptable statistical measure values, it 

could be concluded that the proposed relationships between model parameters and 

catchment characteristics can also be applied to estimate the model parameters for 

other ungauged catchments in the upper Ping river basin. 

 

4. Climatological Z-R relationship for radar rainfall estimation in the upper Ping 

river basin 

 

 Weather radar can potentially provide the spatial and temporal rainfall data as 

input to hydrologic models with the aim of increasing the accuracy of flood 

estimations. The basic principle of radar meteorology for rainfall estimation is 

discussed by many researchers Battan (1973); Rinehart (1991); Doviak and Zrinc 

(1992); Collier (1996). Nevertheless, the weather radar does not measure rainfall 

directly, it measures the power of electromagnetic waves backscattered by raindrops 

in the atmosphere ( rP ) that can be performed as shown in the following equation 

(Battan, 1973; Rinehart, 1991; Doviak and Zrinc, 1992; Collier, 1996). 
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2

2

r
ZKC

Pr =      (73) 

 

where C is a radar constant depending upon wavelength, transmitted power, antenna 

gain, beam width, pulse length, and sum of all losses; r is radar range; 2K  is the 

dielectric factor depending on the physical properties of the target; and Z is radar 

reflectivity factor. The radar reflectivity factor can be calculated using the above 

equation from the known backscattering power and the other variables. For radar 

rainfall estimation, an empirical power relationship between the reflectivity and 

rainfall rate (Z=ARb) called the Z-R relationship is generally used to assess the radar 

rainfall rate. 

 

Various forms of Z-R relations have been suggested in the literature (Marshall 

and Palmer, 1948; Joss and Waldvogel, 1970; Battan, 1973). However these 

relationships cannot be directly used in any region. This is because the A and b 

parameters of the Z-R relationship vary depending on many factors which include 

their dependence on the rainfall drop size distribution which varies in both space and 

time. Reflectivity (Z) and rainfall rate (R) can be estimated directly from the raindrop 

size distribution (DSD) measured using a disdrometer. These Z and R values can then 

be used to construct a Z-R relationship (Atlas, 1964; Battan, 1973; Krajewski and 

Smith, 2002; Russo et al., 2005). However, disdrometers are relatively expensive and 

complicated equipments to operate, and hence it is uncommon for more than one (or 

even any) of them to be operated in conjunction with a weather radar. The use of DSD 

to ascertain a Z-R relationship is not possible at all locations. In places where accurate 

measurements of the DSD are not possible, the option of using reflectivity data 

measured by the radar and the rainfall recorded in rain gauges within the radar 

coverage is generally used. 

 

 The methodology for developing an appropriate climatological Z-R 

relationship to be used for rainfall estimation in the upper Ping river basin is presented 
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in this section. However, the DSD data has not been measured in Thailand, calibration 

of the Z-R relationship will therefore be carried out using the radar reflectivity and 

rain gauge rainfall data located within the radar coverage. 

 

 4.1  Radar reflectivity and rain gauge rainfall data 

 

        4.1.1  Radar reflectivity data  

 

                Radar reflectivity data from the Omkoi radar located in Chiang 

Mai, Thailand were used for the analyses presented in this paper. The instantaneous 

2.5-km PseudoCAPPI reflectivity data during June and October in 2003 and 2004 

were used for an investigation of the Z-R relationship in the upper Ping river basin 

because of its accuracy and the suitability of the rainfall data within the same periods 

as the reflectivity data. 

 

               To avoid the bright band effect, the PseudoCAPPI reflectivity data 

lying within the radar range that causes the height of the upper beam below the 

freezing level was chosen for the analysis. Silverman and Sukarnjanaset (2000) 

recommended that the freezing levels in Chiangmai, Thailand are between 

approximately 4.9 and 5.5 km. The maximum radar range (calculated using the 

equation proposed by Doviak and Zrnic (1992) that gives the height of the upper 

beam below the freezing level of 4.9 km is about 160 km. The reflectivity and rain 

gauge data that lie within the range of 160 km from the radar were therefore used for 

the analysis. It was concluded that this 2.5-km PseudoCAPPI reflectivity data is free 

from the bright band effect. 

 

        4.1.2  Rain gauge rainfall data 

 

        Most of rainfall stations in and around the upper Ping river basin 

are daily read (non-automated) stations providing daily rainfall data. Consequently, 

the climatological Z-R relationship was determined based on a daily data basis. There 

are 50 rain gauges located in the basin and nearby area; but only 42 stations are 
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situated in the range of 160 km from the radar. The available data within the period 

between June and October in 2003 and 2004 collected at these 42 stations were 

therefore used for the calibration of the Z-R relationship. Locations of daily rainfall 

stations operated by the Royal Irrigation Department (RID) and the Thai 

Meteorological Department (TMD) within the Omkoi radar radius are shown in 

Figure 15. 

 

 
 

Figure 15  Locations of daily rainfall stations within the Omkoi radar radius. 
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 4.2  Radar reflectivity measurement errors 

 

 Weather radar can commonly measure the signal that is backscattered by 

targets that include not only the raindrops, but also any objects in the atmosphere 

leading to some errors in reflectivity measurement. During the Z-R relationship 

calibration process, the following errors have to be removed to improve the accuracy 

of the reflectivity values. 

 

1) Height sampling errors caused by the bright band that result in a range 

dependent bias (Fabry et al., 1994; Kitchen et al., 1994; Andrieu and Creutin, 1995; 

Fabry and Zawadzki, 1995; Vignal and Andrieu, 1999; Vignal and Krajewski, 2001). 

 

The radar antennas transmit the signals at several elevation angles. The 

Earth’s curvature and the refraction of the radar beam through the atmosphere cause 

the height of the beam to increase in a non-linear fashion with range (Doviak and 

Zrnic, 1992). Bright band contamination occurs where the radar beam intersects the 

melting layer. During the melting process in this layer, snowflakes and hail become 

coated with a film of water leading to the appearance of giant raindrops. The 

reflectivity in the bright band is generally 5-10 dB stronger than in the rain below or 

the snow directly above (Stewart et al., 1984; Klaassen, 1988; Fabry et al., 1992; 

Andrieu and Creutin, 1995; Williams and Ecklund, 1995). The PseudoCAPPI 

reflectivity data at the altitudes below the freezing levels is therefore selected for 

further analysis to avoid the bright band effect that could cause radar rainfall 

overestimation. 

 

2)  Ground clutter (Collier, 1996) 

  

     Ground clutter is non-precipitation radar echo occurring where the 

main or side lobes of radar beam encounter other targets such as mountains, ground, 

buildings, and trees. The backscattered radar signals from those objects result in 

strong persistent radar reflectivity leading to an overestimation of the radar rainfall.  
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  Gabella and Perona (1998) have suggested that the ground clutter 

effect can be significantly reduced by increasing the elevation angle of the radar 

beam. However, ground clutter correction using this strategy may cause increases in 

height sampling error (Chumchean, 2004). Another strategy involves using a 

topography map of known ground clutter locations and discarding radar measurement 

in these areas (Gabella and Perona, 1998; Chumchean, 2004) is an easier alternative 

and was therefore applied in this study.  

 

  3)  Radar beam attenuation (Hildebrand, 1978) 

 

       Attenuation of radar power (electromagnetic wave) transmitted into 

the atmosphere can be caused by atmospheric gases in the clear atmosphere and by 

precipitation. Water vapor and oxygen are the major atmospheric gases that need to be 

considered as absorbers (Battan, 1973). The basic principle of the attenuation by these 

gases was explained by Vleck (1974a, 1974b). 

 

       Attenuation caused by rain may vary strongly according to rainfall 

rate (Chumchean, 2004). As mentioned in the sub-section “Radar reflectivity data”, 

the sensitivity of the radar beam attenuation due to atmospheric gases and 

precipitation is higher at shorter wavelength. Since the reflectivity data used in this 

study is categorized as the S-band radar - with the longer wavelength compared to the 

X-band and C-band radars - the beam attenuation effect is not significant for this kind 

of radar and it was therefore not considered in this study.  

 

        As mentioned earlier regarding the properties of reflectivity values 

collected by the Omkoi radar, some of the errors comprising beam attenuation and 

bright band are not included. Moreover, the errors by ground clutter and beam 

blocking were already removed by using the correction strategy recommended by 

Gabella and Perona (1998) and Chumchean (2004) as mentioned above in the sub 

section on “Ground Clutter”. 
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  To avoid the effect of noise and hail in the measured radar reflectivity, 

the reflectivity values that are less than 15 dBZ were assumed to represent a 

reflectivity of 0 mm6/m3, and the reflectivity values that are greater than 53 dBZ were 

assumed to be 53 dBZ. 

 

  To avoid the effect of noise and hail, the reflectivity values that that are 

less than 15 dBZ were assumed to represent a reflectivity of 0 mm6/m3, and the 

reflectivity values that are greater than 53 dBZ were assumed to be 53 dBZ 

(Chumchean et al., 2004, 2005, 2006a, 2006b). Once these errors are removed, the 

reflectivity values can be used for further analysis. 

 

 4.3  Radar rainfall accumulation 

 

        For a conventional practice in radar rainfall estimation, a Z-R relationship 

is used to convert the reflectivity into the rainfall intensity. Since most of rainfall 

stations in the upper Ping river basin are non-automatic, the daily rainfall data were 

used to calibrate the climatological Z-R relationship in this study. As the gauge 

rainfall data are in mm per day and the reflectivity data are in mm6/m3 per 6 minute 

interval, the measured instantaneous reflectivity needs to be converted as the radar 

rainfall rate in mm/hr using an original Z-R relationship (see details in the next item). 

However, the units of the radar rainfall rate and gauge rainfall need to be expressed as 

mm per day for calibrating the Z-R relationship. Radar rainfall rates are therefore 

converted into daily radar rainfall in mm unit using a radar rainfall accumulation 

algorithm, which is developed in this study and based on the method proposed by 

Fabry et al. (1994). In this method, the rainfall field is assumed to remain stationary in 

space and intensity during the sampling interval. The radar rainfall accumulation is 

therefore computed by multiplying the radar rainfall rates (mm/hr) by the reflectivity 

data interval and thereafter adding radar rainfall data for each interval to become the 

daily radar rainfall in mm.  
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 4.4 Calibration of climatological Z-R relationship for the upper Ping river 

basin 

 

As there was no calibrated Z-R relationship available for the Omkoi 

radar, the BRRAA has been using the relationship of Z=200R1.6 proposed by Marshall 

and Palmer (1948) to convert the reflectivity data recorded from the Omkoi radar into 

radar rainfall. In this study, the most suitable climatological Z-R relationship of 

Omkoi radar for daily radar rainfall estimation in the upper Ping river basin was 

therefore calibrated using several events of the measured instantaneous reflectivity 

and daily rain gauge rainfall data during June and October in 2003 and 2004. Since 

rain gauge rainfall data in the upper Ping river basin are in the daily basis, the 

calibration techniques based on daily basis proposed by Seed et al. (2002) and Fields 

et al. (2004) were applied to attain the suitable Z-R relationship. Using this technique, 

the instantaneous reflectivity values are initially converted into radar rain rates using 

the standard Z-R relationship (Z=200R1.6) and then accumulated into daily radar 

rainfall. The most suitable relationship will be calibrated by minimising the errors 

between the accumulated daily radar and rain gauge rainfall. The calibrated results 

carried out by Seed et al. (2002) and Fields et al. (2004) showed that the 

multiplicative term A based on daily basis by using the data from Sydney, Melbourne, 

Darwin, and Brisbane, Australia are within the ranges of 50 to 280. Details of the 

methodology in Z-R calibration used in this study can be summarized as follows. 

 

1) Parameters A and b in the Z-R relationship were initially specified as 

200 and 1.6, respectively, which are suitable for the stratiform rainfall (Marshall and 

Palmer, 1948), to be used to convert instantaneous reflectivity data into initial radar 

rain rates.   

 

2) The instantaneous radar reflectivity data during 2003 and 2004 of all 

radar pixels that contain the rainfall stations were converted into rain rates using the 

initial Z-R relationship (Z=200R1.6). The estimated radar rain rate for each time 

interval at a particular rainfall station was then accumulated into daily radar rainfall in 

mm using the radar rainfall accumulation algorithm as mentioned earlier. 
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  3) Mean gauge rainfall and mean radar rainfall of each day were 

estimated using the equations (3) and (4), respectively. 
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where jG  is the mean gauge rainfall on day j; ijg  is gauge rainfall at station i and on 

day j; and N is the total rain gauge numbers. 
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where jR  is the mean radar rainfall on day j; and ijr  is radar rainfall accumulation 

computed using the relationship; Z=200R1.6, for day j at the radar pixels that contain 

the N rainfall gauges. 

 

  4) Estimated mean radar rainfall and mean gauge rainfall were 

compared using four statistical measures recommended by Seed et al. (2002) as 

explained below. 
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Mean Absolute Error, 
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Root Mean Square Error, 
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where n is the number of mean daily rainfall records. 

 

  Several Z-R relationships would be specified by repeating the 

calculation of steps 1 to 4. Whichever relationship gives the minimum of the four 

statistical measures will be chosen as the most suitable relationship for the study. 

 

  Many researchers suggested that parameter b does not need to be 

varied as much as the parameter A (Seed et al., 1996; Steiner et al., 1999; Seed et al., 

1002). Chumchean (2004) summarized the suitable values of A and b that are within 

the ranges of 31 to 500 and 1.1 to 1.9, respectively. To reduce the complicating in 

minimization process, the algorithm proposed by Fields et al. (2004) was applied to 

estimate the appropriate parameter that would give the minimum errors. The exponent 

b was fixed as 1.6 and only the multiplicative term A was adjusted to minimize the 

errors. The new parameter A can be determined from the following equation. 

 

bm
AA 0

1 =      (80) 

 

where 1A  is the new multiplicative term A in Z-R relationship; 0A  is the initial 

parameter A; m is the gradient of the regression line between the predicted radar 

rainfall and the observed gauge rainfall obtained from an original Z-R relationship; 

and b is the exponent (1.6) in the Z-R relationship.  
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5. Effect of rain-gauge temporal resolution on the specification of a Z-R 

relationship 

 

The approach followed to specify the Z-R relationship at a location involves 

collating ground rainfall data at the finest temporal resolution possible, accumulating 

the reflectivity to the same resolution, and ascertaining the parameters using a suitable 

optimization rationale. This relationship is generally used at a resolution finer than the 

ground measured rainfall, under the assumption that the relationship is independent of 

the temporal resolution it is developed at.  

 

While past studies have calibrated the Z-R relationship at a range of temporal 

rainfall resolutions such as hourly, daily, weekly, monthly, seasonal, or even longer 

(Hitchfeld and Bordan, 1954; Smith et al., 1975; Wilson and Brandes, 1979; Klazura, 

1981; Steiner et al., 1995), little has been done to investigate the sensitivity of the 

relationship to the temporal resolution that is used. While the assumption that a Z-R 

relationship developed using hourly rainfall data is not different to application at finer 

resolutions (such as 6 minute) may be appropriate, can the same assumption be made 

if the relationship is developed using only coarse daily observations instead? This is 

the main question we investigate in this analysis, proposing a rationale for scaling the 

Z-R relationship developed at one temporal resolution to another, thereby providing 

an option for specifying the Z-R relationship in locations where sub-daily rainfall 

measurements on a dense rainfall network are not available. 

 

There are two objectives in this analysis. The first objective is to study the 

effect of using rain gauge data of different temporal resolutions for calibrating 

climatological Z-R relationships. Different climatological Z-R relationships were 

estimated using rainfall aggregated over 1 to 24 hours. Radar reflectivity data from 

the Kurnell, the Mt Stapylton, and the Pasicharoen radars located in Sydney, 

Brisbane, and Bangkok, respectively, and corresponding rain gauges data in the three 

cities, were used in the analysis. The second objective is to propose a generic scaling 

rule that can be used to estimate radar rainfall at fine temporal resolution for the cases 
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where only daily rain gauge rainfall data are available for use in the Z-R calibration. 

A simple scaling hypothesis was applied to construct a scaling transformation 

equation to ascertain the A parameters at finer temporal resolution.  

 

The method for calibrating different climatological Z-R relationships using 

rainfall aggregated over 1 to 24 hours and the simple scaling hypothesis for the 

multiplicative term A are presented in this section. 

 

5.1  Radar and rain gauge data 

 

 Radar reflectivity data from the Kurnell, the Mt Stapylton, and the 

Pasicharoen radars located in Sydney, Brisbane, and Bangkok, respectively, and 

corresponding rain gauges data representing large networks in the three cities, were 

used for the analyses. Locations of tipping-bucket rain gauges within the Kurnell, the 

Mt Stapylton, and the Pasicharoen radars radius are presented in Figure 11, 12, and 

10, respectively. Three datasets of the 1.5-km CAPPI (Constant Altitude Plan Position 

Indicator) reflectivity data at the Kurnell radar and hourly rain gauge data obtained 

from a 227 rain gauge network during November 2000 – April 2001, August – 

December 2006, and January – May 2007 were used for the Z-R development for the 

Sydney area. The Mt Stapylton radar data used represented the November 2006–

March 2007 period, with corresponding rain gauge data obtained from a 202 rain 

gauge network. For the Z-R calibration in Bangkok area, one dataset of the 0.5o PPI 

(Plan Position Indicator) reflectivity data at Pasicharoen radar and 15-minute rain 

gauge data obtained from a 61 rain gauge network during June 2005–October 2006 

were used. 

 

 Rain gauge rainfall data used in this study were obtained from the 

networks of 227, 202, and 61 continuous tipping-bucket gauge stations located within 

100 km from the Kurnell, the Mt Stapylton, and the Pasicharoen radars as illustrated 

in Figure 11, 12, and 10, respectively. The tipping bucket gauge can systematically 

under-record the true rainfall accumulation during the hour by the volume of water 
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required to initially wet the funnel plus the volume of water stored in the tipping 

bucket at the end of hour. However, the amount of rainfall required to wet the funnel 

of the gauge before it starts to drain into the tipping bucket is very small, and 

considered to be insignificant in this study. The rain gauges used in this study have a 

tipping bucket size of 1.0 mm and 0.5 mm. Because tipping bucket rain gauges record 

the time of the tips, they are subject to significant high quantization error at low 

rainfall intensity (Chumchean et al., 2003, 2004, 2006a, 2006b). Therefore, only the 

rainfall amounts that are greater than the volume of that gauge’s tipping bucket were 

used in this analysis. It should be noted that quality control of these data has been 

performed by considering rainfall data from adjacent gauges and the plots of time 

series. If unusual rainfall data were found, these data were excluded from the analysis. 

 

To avoid the effects of bright band and different observation altitude in radar 

reflectivity, the CAPPI reflectivity data at the altitude below the climatological 

freezing levels of the Sydney and Brisbane, and the PPI reflectivity data of the 

Pasicharoen radar at the lowest elevation angle within the radar range that give the 

height of radar beam below the freezing level were used in the analyses.  

 

The climatological freezing levels for Sydney, Brisbane, and Bangkok is about 

2.5 km, 3.0 km, and 4.7 km, respectively (Chumchean et al., 2003, 2004). In this 

study, the 1.5-km CAPPI reflectivity data of both radars in Australia and 0.5o PPI 

reflectivity data of Bangkok and only the reflectivity and rain gauge data that lie 

within 100 km from the radars were used. It is to be noted that the height of the base 

scan beam center at this range is about 1.8 km above the ground which is also below 

the freezing levels for the three cities and it can be considered to be not overly 

different from the 1.5 km CAPPI height. Therefore, we consider that the reflectivity 

data used in this study are free from the effects of bright band and different 

observation altitude.  

 

 To avoid the effect of noise and hail in the measured radar reflectivity, the 

reflectivity values that are less than 15 dBZ were assumed to represent a reflectivity 
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of 0 mm6/m3, and the reflectivity values that are greater than 53 dBZ were assumed to 

be 53 dBZ. . Additionally, the errors due to effect of ground clutter were also removed 

from the reflectivity data by finding the clutter locations from the map and discarding 

the radar measurements in these areas. 

 

5.2  Calibration of the Climatological Z-R relationship 

 

        The Z-R conversion error is an important source of error in radar rainfall 

estimates. The following empirical power law relationship is used to estimate radar 

rainfall using measured reflectivity (Battan, 1973; Rinehart, 1991; Doviak and Zrinc, 

1992; Collier, 1996):  

 

bARZ =      (81) 

 

         Here, A and b are the radar parameters to be estimated which depend on 

the DSDs that have been sampled, assuming that the terminal velocity of the raindrops 

is a function of their diameter, and that they are falling at terminal velocity through 

still air (Chumchean et al., 2008), Z is radar reflectivity expressed in mm6 m-3, and R 

is the rainfall rate in mm hr-1. While the parameter A is observed to change 

significantly from one region to another depending on the nature of the rainfall events 

that occur, many researchers have suggested that the exponent b does not change as 

much (Seed et al., 1996; Steiner et al., 1999; Seed et al., 2002; Chumchean et al., 

2003). Typical values of the multiplicative term A may range from 100 to 500 

(Battan, 1973), whereas the exponent b varies from 1 to 3 (Smith and Krajewski, 

1993), with typical values between 1.2 and 1.8 (Battan, 1973; Ulbrich, 1983). 

Doelling et al. (1998); Steiner and Smith (2000); and Hagen and Yuter (2003) 

investigated an appropriate value of the b parameter using several years of reflectivity 

data measured by a disdrometer. They found that a value of 1.5 was suitable to 

represent the b parameter in the Z-R relation. Seed et al. (2002) illustrate that the root-

mean-square error (RMSE) of radar-rainfall estimates are quite insensitive to the 

value of b over the range (b = 1.6, 1.5, and 1.4). Based on the above arguments and 



 83

the result of a climatological calibration using the datasets analysed in this study, the 

b parameter of the Z-R relation was fixed at 1.6 while the A parameter was ascertained 

using the procedure described next. 

 

To study the effect of using rain gauge data of different temporal 

resolutions on Z-R relationships, different Z-R relationships were estimated using 

rainfall aggregated over 1 to 24 hours. The logic used was as follows:  

 

  1) Convert instantaneous radar reflectivity into an initial radar rainfall 

intensity using the relationship Z=200R1.6 (Marshall and Palmer, 1948). Note our 

earlier comment on the relative insensitivity of results to changes in the b exponent as 

our rationale for keeping it fixed equal to 1.6 in our study. 

 

  2) Accumulate the initial instantaneous radar rainfall into 1-hour to 24-

hour rainfall resolutions using the accumulation algorithm proposed by Fabry et al. 

(1994). In this method, the rainfall field is assumed to move at constant velocity and 

to vary linearly in intensity during the sampling interval. The storm velocity was first 

computed for each time interval and then used to simulate a 1 min sampling rate by 

advecting the field observed at the start of the interval toward the field observed at the 

end of the interval. Represent the accumulated rainfall now via a variable A 

parameter, denoted Aa, where the subscript denoted the time resolution the rainfall is 

aggregated over. The resulting radar rainfall (which is a function of Aa) is denoted as 

Ri,t,a where the subscripts denote the gauge, time-step and temporal resolution 

respectively.  

 

  3) Ascertain the rain gauge rainfall at station i for time-step t for 

temporal resolution a (denoted Gi,t,a) by accumulating it from a 1-hour to the other 

durations (1 to 24-hours) considered.  

 



 84

  4) Estimate the optimal value of Aa for each time resolution a 

considered by minimizing the Mean Absolute Error (MAE) between the gauge and 

radar rainfall estimates. The Mean Absolute Error is expressed as: 
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where Ri,t,a is the radar rainfall accumulation at the pixel corresponding to the ith rain 

gauge for hour t for a temporal resolution a, Gi,t,a is the corresponding gauge rainfall 

for hour t, NG is the number of rain gauges, and Nt,a is the number of time periods for 

each time resolution a. 

 

It should be pointed out that this study used the Mean Square Error (MSE) and 

the Mean Absolute Error as two separate error criteria. While the results from both 

criteria were similar, the MSE exhibited greater instability for results for larger time 

resolutions than the MAE, possibly because of fewer gauge-radar pairs being 

available, and the tendency of the measure to magnify the larger differences. As a 

result, the results presented in the next main section “Results and Discussion” are 

based on the MAE error criterion alone. 

 

5.3  Climatological Z-R relations for variable temporal resolutions 

 

         The five datasets considered in this study were used to develop Z-R 

relationships by following the calibration procedure outlined in the sub-section 5.2. 

Numbers of radar-gauge pairs used for Z-R calibration for each temporal resolution in 

each dataset are also presented in the Table 5. As mentioned before, the results 

presented here correspond to the use of the Mean Absolute Error as the objective 

function to be minimized. The A parameters of Z-R relationships derived by using 

different temporal rainfall resolutions for the five datasets are illustrated in the Figure 

16. Note that, datasets Sydney (1), Sydney (2) and Sydney (3) represent data for 
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periods November 2000 – April 2001, August – December 2006, and January – May 

2007, respectively. The results in Figure 16 illustrate clearly that the highest value of 

parameter A is obtained when the temporal resolution is one hour, with the parameter 

value decreases as the aggregation period increases. The difference between the 

calibrated A parameters for Sydney, Brisbane, and Bangkok are large, while there are 

only small differences between Sydney (1) to Sydney (3). This is to be expected given 

the differences in the dominant storm types that could be expected between the three 

cities.  

 

         From the above results, it can be seen that the multiplicative term A of the 

Z-R relationship varies as a function of the temporal resolution of the rainfall used in 

the calibration. Derivation of the A parameter using coarse (say daily) rainfall and 

subsequently applying it to estimate fine resolution (say hourly or sub-hourly) rainfall 

can lead to significant biases in the resulting estimates. For situations where only 

daily rain gauge rainfall data is available for use in the Z-R calibration, a 

transformation function for converting the A parameters to other resolutions is 

needed. 
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Table 5  Number of radar-gauge pairs used for Z-R calibration at each temporal 

resolution.  

 

a)  Sydney datasets 

 
Temporal Sydney (1) Sydney (2) Sydney (3) 

resolution 0-100 0-50 50-100 0-100 0-50 50-100 0-100 0-50 50-100 

 (hour) km km km km km km km km km 

1 31,405 22,527 8,878 9,664 7,857 1,807 17,294 13,299 3,995 

2 20,298 14,676 5,622 6,514 5,281 1,233 11,891 9,151 2,740 

3 15,649 11,384 4,265 5,195 4,175 1,020 9,319 7,134 2,185 

4 13,143 9,567 3,576 4,385 3,565 820 7,815 6,003 1,812 

5 11,165 8,119 3,046 3,862 3,119 743 7,057 5,423 1,634 

6 9,871 7,200 2,671 3,582 2,885 697 6,290 4,806 1,484 

7 8,959 6,576 2,383 3,136 2,522 614 5,773 4,427 1,346 

8 8,622 6,305 2,317 2,930 2,310 620 5,253 4,033 1,220 

9 7,454 5,428 2,026 2,878 2,284 594 4,903 3,752 1,151 

10 6,890 4,965 1,925 2,544 2,001 543 4,771 3,628 1,143 

11 6,414 4,612 1,802 2,300 1,811 489 4,490 3,408 1,082 

12 6,009 4,401 1,608 2,357 1,884 473 4,061 3,072 989 

13 5,760 4,184 1,576 2,146 1,724 422 4,116 3,119 997 

14 5,550 4,087 1,463 2,130 1,683 447 3,825 2,881 944 

15 5,145 3,746 1,399 1,872 1,468 404 3,701 2,757 944 

16 5,135 3,759 1,376 1,806 1,422 384 3,476 2,634 842 

17 4,741 3,474 1,267 1,793 1,403 390 3,516 2,644 872 

18 4,563 3,351 1,212 1,892 1,497 395 3,189 2,388 801 

19 3,987 2,901 1,086 1,802 1,404 398 3,289 2,486 803 

20 3,883 2,792 1,091 1,676 1,311 365 3,007 2,238 769 

21 3,749 2,722 1,027 1,579 1,227 352 3,196 2,402 794 

22 3,879 2,827 1,052 1,519 1,158 361 2,952 2,181 771 

23 3,639 2,655 984 1,548 1,197 351 2,695 1,989 706 

24 3,424 2,479 945 1,438 1,112 326 2,653 1,983 670 
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b)  Brisbane and Bangkok datasets 

 
Temporal Brisbane Bangkok 

resolution 0-100 0-50 50-100 0-50 0-15 15-50 

 (hour) km km km km km km 

1 14,949 8,696 6,253 868 563 305 

2 9,849 5,747 4,102 703 467 236 

3 7,652 4,485 3,167 645 418 227 

4 6,628 3,880 2,748 567 371 196 

5 5,908 3,489 2,419 536 345 191 

6 5,222 3,033 2,189 548 354 194 

7 4,902 2,878 2,024 503 325 178 

8 4,514 2,636 1,878 473 298 175 

9 3,914 2,265 1,649 506 336 170 

10 3,680 2,142 1,538 471 301 170 

11 3,864 2,259 1,605 493 323 170 

12 3,875 2,239 1,636 471 306 165 

13 3,229 1,880 1,349 458 293 165 

14 3,308 1,926 1,382 465 306 159 

15 3,122 1,805 1,317 422 278 144 

16 3,067 1,765 1,302 414 272 142 

17 2,892 1,718 1,174 493 312 181 

18 2,758 1,616 1,142 490 315 175 

19 2,712 1,570 1,142 554 344 210 

20 2,477 1,420 1,057 450 288 162 

21 2,566 1,479 1,087 526 326 200 

22 2,730 1,558 1,172 510 325 185 

23 2,555 1,477 1,078 476 323 153 

24 2,378 1,376 1,002 465 316 149 
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Figure 16  Coefficient A of the Z-R relationship, derived using a fixed exponent b 

equal to 1.6, for the Kurnell, the Mt Stapylton, and the Pasicharoen 

radars, as a function of varying temporal rainfall resolutions. 

 

5.3  Simple Scaling Hypothesis for the multiplicative term A 

 

       As a means of explaining the variation of A with temporal resolution in 

Figure 16, we hypothesis here that A exhibits simple scaling behaviour in time 

(Mandelbrot, 1982; Chumchean et al., 2004). Such a hypothesis has been used by 

others to describe rainfall extremes at fine temporal resolutions (Menabde et al., 

1999), to develop cascade models of rainfall disaggregation in time (Sivakumar and 

Sharma, 2007) and to explain bias in radar rainfall estimates in space (as a function of 

distance from the radar) (Chumchean et al., 2004). The simple scaling hypothesis (as 

defined by Gupta and Waymire (1990) and used by Chumchean et al. (2004) in a 

spatial scaling context) can be expressed as:  
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T

dist

t ATtA η−= )/(      (83) 

 

where 
dist
=  represents the equality of the probability distribution for the multiplicative 

factor A, t/T is a scale factor, t (hr) is the temporal resolution at which the rainfall 

needs to be estimated, T (hr) is the reference temporal resolution of the radar rainfall, 

η  is a scaling exponent that needs to be ascertained, and TA and tA  represent the 

parameter A at temporal resolutions T and t respectively. The distributional equality 

represented in (3) implies that the quantiles and the moments of any order of the 

calibrated multiplicative term A are scale-invariant. Raising both sides of Eq. (3) with 

different power q, the relationship between the qth moment can be written as:  

 

q
T

qq
t ATtA η−= )/(      (84) 

 

       The brackets denote the expected value of the q’th order moment for the 

multiplicative term A. Estimation of the scaling exponent η  that best describes the 

distributional equality expressed in equations (83) and (84) now proceeds by fitting 

the relationship in (4) across a range of moment orders q.  

 

       Moment orders q equal to 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 

and 6.0, were used to ascertain the optimal value of η  for the five rainfall datasets 

used. A scaling transformation equation for calculating A parameters at finer temporal 

resolution in a situation where only daily rain gauge rainfall data is available can 

therefore be written as: 

 

24)24/( AtAt
η−=      (85) 

 

       The result of an optimal value of η  was presented in the next main 

section “Results and Discussion”. 
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6. Improvement in runoff estimation accuracy using radar 

 

Measured rainfall is one of the most significant input data in applying the 

hydrological models for runoff and flood estimations. Unfortunately, the distribution 

of rainfall usually varies significantly in both space and time (Seed and Austin, 1990); 

therefore, the limited number of rainfall stations in the catchment can have a major 

impact on the accuracy of runoff and flood estimations (Wilson et al., 1979; Bevan 

and Hornberger, 1982; Hamlin, 1983). The accurate estimation of the spatial 

distribution of rainfall therefore requires a very dense rainfall network, which 

involves high installation and operational costs (Goovaerts, 2000). Radar rainfalls 

estimated from the weather radar are the alternative rainfall products which are 

spatially distributed over the catchment using the available rainfall network. The 

weather radar, which is a widely used basis for rainfall estimation at fine spatial and 

temporal resolutions (Collinge and Kirby, 1987; Sun et al., 2000; Uijlenhoet, 2001; 

Vieux, 2003), can better capture the spatial variation of rainfall fields than rain gauge 

rainfall data in areas where rain gauges are distributed sparsely (Yang et al., 2004; 

Segond et al., 2007). There are number of papers shown the improvements in flood 

estimation and flood forecasting using radar rainfall as the input data to hydrological 

models (Wyss et al., 1990; Pessoa et al., 1993; Borga et al., 2000; Sun et al., 2000). 

Spatial rainfall estimation over the upper Ping river basin using the weather radar was 

therefore investigated in this study and then was used as the input data for the selected 

hydrologic model to see whether there is any improvement to the accuracy in runoff 

estimations. 

 

Use of a Z-R relationship (Z=ARb) - calibrated using radar reflectivity data (Z) 

and corresponding rain gauge rainfall data (R) located within the radar coverage - is a 

traditionally technique for radar rainfall estimation. The gauge rainfall data at the 

finest temporal resolution possible is collected, and the reflectivity data is then 

accumulated to the same resolution of rain gauge to ascertain the Z-R parameters 

using a suitable optimization rationale. This calibrated relationship is generally used 
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at a resolution finer than the ground measured rainfall, under the assumption that the 

relationship is independent of the temporal resolution it is developed at. However, 

there might be a significant error on radar rainfall estimates caused by applying the Z-

R relationship developed using rain gauge data at coarse temporal resolutions (say 

daily) to estimate radar rainfall at finer temporal resolution. To reduce this error, the 

transformation equation proposed in this thesis as presented the methodology in 

earlier section was used in this analysis. 

 

In this study, radar rainfalls at hourly and daily temporal resolution were 

estimated to be used as different input data to the selected hydrological model (URBS 

model). Since only daily gauge rainfall data is sufficiently available in the upper Ping 

river basin, a calibration process of the Z-R relationship as presented the methodology 

in section 4 was therefore undertaken based on the daily basis. This calibrated daily 

Z-R relationship and mean field bias technique were applied here to estimate the daily 

radar rainfall over the study area. For hourly radar rainfall estimation, there are two 

estimation approaches proposed in this study. Firstly, the daily Z-R relationship was 

directly used to estimate radar rainfall at hourly time scale. Secondly, the scaling 

equation was applied to the daily Z-R relationship for hourly rainfall estimation. The 

daily gauge rainfall, daily radar rainfall, and two types of hourly radar rainfall were 

later used as different input data to the hydrological model at particular runoff stations 

in the study area. Results of flow hydrograph estimated by these four types of rainfall 

data were compared for their accuracy and effectiveness. Capabilities and advantages 

of using rain gauge rainfall and radar rainfall as the input data to the hydrological 

model for runoff estimation were finally defined. The data collection and 

methodology for estimating the four types of rainfall data are described as follows. 
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6.1  Data collection 

 

6.1.1  Radar reflectivity data 

 

         Radar reflectivity data recorded from the Omkoi radar, which is 

own and operated by the Bureau of Royal Rainmaking and Agricultural Aviation 

(BRRAA), was used for daily and hourly radar rainfall estimation in some sub-

catchments of the upper Ping river basin.  

 

         Because of the accuracy of the recorded reflectivity data and their 

suitability to the gauge rainfall and runoff data within the same periods, three datasets 

in rainy season (May – October) of the 2.5-km pseudoCAPPI reflectivity data at the 

Omkoi radar during June – October 2003, May – September 2004, and May – July 

2005 were therefore used for the analysis.  

 

          Since the reflectivity data used in this study was ascertained from 

the S-band radar, beam attenuation effect was therefore considered to be insignificant 

(Hitschfeld and Bordan, 1954; Delrieu et al., 2000). 

 

          To avoid the effects of bright band and different observation 

altitude in radar reflectivity, the pseudoCAPPI reflectivity data lying within the radar 

range that causes the height of the upper beam to be below the climatological freezing 

level of Chaing Mai was therefore used in the analysis. The climatological freezing 

level for Chiang Mai is about 4.9 km (Silverman and Sukarnjanaset, 2000). The 

maximum radar range (calculated using the equation proposed by Doviak and Zrnic 

(1992)) that gives the height of the upper beam below the freezing level of 4.9 km is 

about 160 km. The reflectivity that lies within a range of 160 km from the radar was 

therefore used for the analysis. Consequently, we consider that the reflectivity data 

used in this study are free from the effects of bright band and different observation 

altitude. 
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  To avoid the effect of noise and hail in the measured radar reflectivity, 

the reflectivity values that are less than 15 dBZ were assumed to represent a 

reflectivity of 0 mm6/m3, and the reflectivity values that are greater than 53 dBZ were 

assumed to be 53 dBZ. Additionally, the errors due to effect of ground clutter were 

also removed from the reflectivity data by finding the clutter locations from the map 

and discarding the radar measurements in these areas. 

 

6.1.2  Rain gauge rainfall data 

 

            There are 35 rain gauge rainfall stations located within 160 km 

range from the Omkoi radar. Thirty two stations are non-automatic stations providing 

daily rainfall data, while only 3 rain gauges are automatic station. Since most of 

gauges in and around the project are daily rain gauges, three datasets of rain gauge 

rainfall data obtained from the networks of 35 gauge stations at the same period of the 

reflectivity data were therefore used in this study. These rain gauges are owned and 

operated by the Royal Irrigation Department (RID) and the Thai Meteorological 

Department (TMD). The quality control of these rain gauge rainfall data has also been 

performed by considering rainfall data from adjacent gauges and the plots of time 

series. If unusual rainfall data were found, these data were excluded from the analysis. 

Locations of rain gauge rainfall used in this analysis are presented in Figure 17. 

 

6.1.3  Runoff data 

   

           As the reflectivity data lying within a range of 160 km from the 

Omkoi radar were used in this study, runoff data obtained from the 6 stations namely 

P.21, P.71, P.14, P.24A, P.77, and P.73, which have sufficient data available and 

located in the upper Ping river basin within that range, were therefore used for the 

analysis. These runoff stations, which have the catchment areas of 510, 1,727, 3,853, 

454, 544, and 2,242 km2, respectively, are owned and operated by the RID. 
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Figure 17  Locations of rainfall and runoff stations in the upper Ping river basin. 

 

  Three datasets of hourly flow hydrograph data for these 6 runoff 

stations at the same period of reflectivity and rain gauge rainfall data were used in this 

study. Note that, the P.73 actually is the most downstream runoff station of the upper 

Ping river basin with the catchment area of approximately 12,910 km2. However, the 

catchment area of the P.73 used in this study is the area (2,242 km2) which is 

excluded sub-catchment area of main tributaries of the Ping river (see Figure 17). For 

model calibration and verification at this station, only rainfall on this incremental 

catchment was transformed to be runoff using the URBS model, while the runoff data 
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from the main tributaries was obtained from the runoff stations located at their 

downstream.  

 

6.2  Catchment rainfall estimation 

 

        There are four types of catchment rainfall that have been calculated to be 

used as the input data for the URBS model for runoff estimation at the six runoff 

stations in the upper Ping river basin during three period of the datasets. These 

comprise the daily gauge rainfall, the daily radar rainfall, and the hourly radar rainfall 

with and without scaling logic. Catchment rainfall estimation methods for different 

rainfall types are explained as follows. 

 

6.2.1  Daily rain gauge rainfall estimation 

 

          Rainfall data measured from rain gauges installed on the ground 

has generally been used as the input data to a hydrological model for runoff and flood 

estimation. In this study, the catchment rainfalls for the sub-catchments of each runoff 

station were calculated using the Thiessen polygon technique - which is a spatial 

interpolation technique and usually applied in the area with non-uniform distribution 

of the rain gauges (Chow et al., 1988). Thirty five daily rain gauges located in and 

around the upper Ping river basin were used to construct the Thiessen polygons. Daily 

catchment rainfalls for each sub-catchment were calculated by the multiplication 

between the daily gauge rainfalls and its corresponding weighting factor estimated 

from the generated polygons. 

 

6.2.2  Daily radar rainfall estimation 

 

           Typically, a Z-R relationship is used to estimate radar rainfall 

using measured reflectivity data (Battan, 1973; Rinehart, 1991; Doviak and Zrinc, 

1992; Collier, 1996). Various forms of Z-R relations have been suggested in the 

literatures (Marshall and Palmer, 1948; Joss and Waldvogel, 1970; Battan, 1973). 
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However, these relationships cannot be directly applied in all regions, a climatological 

Z-R relationship for daily radar rainfall estimation in the upper Ping river basin was 

therefore developed in this thesis as presented the methodology in section 4. This 

proposed equation was used to convert three data sets of instantaneous radar 

reflectivity data recorded at the Omkoi radar at the pixel located in the target area into 

the instantaneous radar rainfall intensity. The instantaneous radar rainfalls were 

thereafter accumulated into 24-hour rainfall resolution using the accumulation 

algorithm proposed by Fabry et al. (1994).  

 

 Although the errors caused by reflectivity measurement process were 

corrected and the Z-R relationship suitable for the study area was used in radar 

rainfall estimation, there remain errors in the radar rainfall estimates (Chumchean et 

al., 2006). These residual errors are due to the A and b parameters of the Z-R 

relationship vary depending on many factors which include the rainfall drop size 

distribution which varies in both space and time. Additionally, there are some 

differences between the two different types of rainfall measuring sensors. That is a 

rain gauge records rainfall at a point on the ground while radar measures 

instantaneous rainfall at some height (1-3 km) above the ground. To improve the 

accuracy on radar rainfall estimation, these residual errors needs to be eliminated. A 

mean field bias correction technique (Wilson, 1970; Battan, 1973; Brandes, 1975; 

Collinge, 1991; Seo and Breidenbach, 2002; Chumchean et al., 2006) was used to 

eliminate these errors in this study. An adjustment factor -computed as the ratio of the 

mean-areal gauge rainfall to the corresponding radar rainfall (Anagnostou et al., 1998; 

Borga et al., 2000) - was first assessed, and the radar rainfall estimated by the 

proposed daily Z-R relationship for the upper Ping river basin was thereafter adjusted 

by multiplying the adjustment factor to the initial radar rainfall 

 

There are many mean field bias techniques, and each technique can be 

used to correct the errors caused by temporal and/or spatial variability. However, rain 

gauge networks located in the target basin are too sparse (1 gauges/600 km2) to 

represent spatial rainfall distribution, estimation of mean field bias adjustment factor 

were therefore consider to be uniform in space but vary in time. In this study, the 
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mean field bias was computed at the daily time scale using the recorded daily gauge 

rainfall data and initial daily radar rainfall (estimated using the proposed Z-R 

relationship for the study area) during the three dataset of 2003, 2004, and 2005. An 

adjustment factor for day t (Bt) was calculated as:  

 

rainfallradar arealMean
rainfallgaugearealMean

=tB     (86) 

 

  Mean areal gauge rainfall was calculated using the Thiessen polygon 

technique. All 35 rain gauges in the upper Ping river basin located within the range of 

160 km from the Omkoi radar were used in the analysis. Mean areal radar rainfall was 

computed by averaging the initial daily radar rainfall at all radar pixels located within 

the 160 km range. Mean areal gauge and radar rainfall can be written as: 

 

∑
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1rainfallgage arealMean    (87) 

 

  where A is the catchment area of the upper Ping river basin located 

within 160 km range from the Omkoi radar, Ai,t is the sub-area of Thiessen polygon 

corresponding to the ith rain gauge for day t, Gi,t is the corresponding daily gauge 

rainfall (mm) for day t, and NG,t is the number of sub-area of the polygon over the 

basin for day t. 
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  where, Ri is the initial daily radar rainfall (mm) estimated using the 

proposed Z-R relationship for Omkoi radar at the ith pixel for day t, NP is the number 

of radar pixels in the upper Ping river basin situated within the 160 km range. 
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  It should be noted that the daily rainfall at the current day is available 

at the end of the day, the mean field bias for day t will therefore be computed at the 

end of the day t. However, radar can estimate rainfall since the commencement of the 

day t. The mean filed bias for the previous day (t-1) was therefore used for radar 

rainfall correction at day t, under the assumption that the mean field bias will be the 

same between yesterday and today. 

 

 The initial daily radar rainfall for day t at all pixels located in the 6 

gauged catchments was multiplied by Bt-1 to obtain adjusted daily radar rainfall. For 

sub-catchment rainfall estimation in each gauged catchment, the corrected daily radar 

rainfall at all pixels located in the sub-catchment was averaged using the simple 

arithmetic averaging method to ascertain the total daily rainfall input for the URBS 

model. 

 

6.2.3  Hourly radar rainfall estimation 

 

            Because of the limitation in obtaining continuous rain gauge 

rainfall data for the upper Ping river basin, the mean filed bias correction was 

undertaken based on daily basis. The daily radar rainfall adjusted by the mean field 

bias values was also applied for hourly radar rainfall estimation in this study. When 

the daily radar rainfall were adjusted by the mean field bias, as a result, the original 

24-hour A parameter (obtained using the reflectivity data from the Omkoi radar and 

corresponding rain gauge rainfall data) was changed with day depending upon the 

mean field bias used for correcting daily radar rainfall. The update 24-hour A 

parameter for day t tnewA )( 24  was therefore computed using the following equation. 

 

b
t

old
tnew B

AA
1

24 )(
−

=      (89) 

 

 where oldA  is the 24-hour A parameter used in daily rainfall estimation 

before applying mean field bias correction (see results of climatological Z-R 
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relationship for the upper Ping river basin), Bt-1 is the adjustment factor for day t-1, 

and b is the radar parameter which was fixed as 1.6.  

 

           For hourly radar rainfall estimation at day t covering the project 

area, three datasets of the recorded instantaneous radar reflectivity at the pixel located 

in the target area were converted into radar rainfall using the updated 24-hour Z-R 

relationship that A parameter was calculated using Equation (89), and b parameter 

was fixed at 1.6. The calculated instantaneous radar rainfall was thereafter 

accumulated into 1-hour rainfall resolution using the accumulation algorithm 

proposed by Fabry et al. (1994). For sub-catchment rainfall estimation in each gauged 

catchment, the estimated hourly radar rainfall at all pixels located in the sub-

catchment was averaged using the simple arithmetic averaging method to ascertain 

the hourly rainfall input for the URBS model. 

 

  6.2.4  Hourly radar rainfall estimation using the scaling transformation 

equation 

 

             Since the A parameter of the Z-R relationship tends to decrease 

with a decrease in the rainfall temporal resolution used to develop the relationship, 

application of the 24-hour Z-R relationship to estimate radar rainfall at finer temporal 

resolution may give significant error on rainfall estimates. For situations where only 

daily rain gauge rainfall data is available for Z-R calibration, a climatological scaling 

transformation equation for converting the A parameter to finer resolutions was 

proposed as presented Equation (85). Note that, the results of scaling exponent (η ) 

was later presented in the “results and discussion” at the sub-section “Effect of rain-

gauge temporal resolution on the specification of a Z-R relationship”. Consequently, 

that scaling transformation equation was also used for hourly rainfall estimation in 

this study.  

  

             From the Equation (85), there are two parameters (t and A24) 

needed for At estimation. The t was substituted as 1 hour. Since the mean field bias 

correction based on daily time scale was applied in this study, the original A24 was 
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therefore changed with day depending upon the mean field bias used for correcting 

daily radar rainfall as presented in Equation (89). The 1-hour A parameter for day t 

tA )( 1  was therefore derived using the following equation. 

 

tnewt AA )()
24
1()( 241

η−=     (90) 

 

            For hourly radar rainfall estimation at day t covering the project 

area, the calculated tA )( 1  parameter and the b parameter fixed at 1.6 will be applied to 

the three datasets of the recorded instantaneous radar reflectivity for the pixel located 

in the target area. 

 

6.3  Model calibration and verification 

 

       Model calibration and verification processes were carried out to define the 

most suitable set of control parameters of the URBS model for each rainfall dataset 

and each runoff station. For each runoff station, the 4 estimated catchment rainfall 

fields for the first dataset (June – October 2003) and the last 2 datasets (May – 

September 2004, and May – July 2005) were separately used as the input data to the 

URBS model for model calibration and verification, respectively. The individual set 

of model parameters for each rainfall input type that produced the goodness of fit 

between the hourly observed and the simulated flow hydrographs for both in 

calibration and verification processes were identified as the most suitable set.  

 

        Four statistical measures: the correlation coefficient (r), the efficiency 

index (EI) or Nash-Sutcliffe criterion (Nash and Sutcliffe, 1970; Krause et al., 2005), 

overall root mean square error (RMSE), and average RMSE of peak flow events 

(RMSEpeak) (Madsen, 2000) were considered to provide a general guide in the 

assessment of the overall performance of the observed and calculated hydrographs. 

Equations used to calculate these statistical measures are expressed in Table 6. 
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Table 6  Statistical measures used to identify the goodness of fit of flood 

hydrographs. 

 

Statistical Measures Equations 
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 where, imQ ,  is the observed discharge at time i, mQ  is the average value of 

observed discharge, icQ ,  is the calculated discharge at time i, cQ  is the average value 

of the calculated discharge, N  is the number of data points, P is the number of peak 

flow events, Mj is the number of data points at peak flow event j. Note that, peak flow 

events are defined as periods where the observed discharge is above a 10 % 

probability of exceedance (Paiva, 1993). The best fit between the calculated and 

observed discharges using these parameters occurs when the correlation coefficient (r) 

approaches 1, the efficiency index (EI) approaches 100 percent, the overall root mean 

square error (RMSE) and average root mean square error of peak flow event 

(RMSEpeak) approach zero.  
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RESULTS AND DISCUSSION 
 

 According to the objectives of this thesis, results and discussion of this study 

corresponding to the topic of methodologies described above can be summarized 

below. 

 

1. Hydrologic model selection 

 

 According to the results of hydrologic model selection as presented in the 

section of methodology for model selection, the URBS model is the most appropriate 

hydrologic model for flood and runoff estimation in this thesis. 

 

2. Testing the URBS model performance and extending its application to the 

ungauged catchments 

 

 2.1  Results of the URBS and the NAM model calibrations and verifications 

for flood estimation in the upper Ping river basin 

 

        Applications of the URBS and the NAM models on particular runoff 

stations and flood events were undertaken by adjusting model parameters to achieve 

the best fit between the observed and the simulated flood hydrographs for both in 

calibration and verification processes. The simulation results showed that both models 

can simulate flood hydrographs close to the observed hydrographs for most flood 

events as shown by acceptable average statistical values for model parameters in 

Figure 18. Examples of model application results for the three calibrated runoff 

stations are shown in Figures 19 to 23. It should be noted that both models cannot 

simulate flood hydrographs accurately for a few flood events, this most likely is 

attributable to inaccuracy of daily rainfall data, which is the most significant input 

data for model estimation, and only few rainfall stations are located within the 

catchment areas of some of the runoff stations.   



 103

 

0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94

1 2 3 4 5

r

URBS Model
NAM Model

P.20 P.4A P.28 P.21 P.71  
0

20

40

60

80

100

1 2 3 4 5

EI
 (%

)

URBS Model
NAM Model

P.20 P.4A P.28 P.21 P.71

a) Correlation Coefficient (r) b) Efficiency Index (EI) 

0
5

10
15
20
25
30
35
40

1 2 3 4 5

RM
SE

 (c
m

s)

URBS Model
NAM Model

P.20 P.4A P.28 P.21 P.71  

 

c) Root Mean Square Error (RMSE)  

 

Figure 18  Average statistical measures of the URBS and the NAM models. 
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e) Flood hydrograph in 2003  

 

Figure 19  Observed and calculated flood hydrographs at the runoff station P.20. 
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e) Flood hydrograph in 2003  

 

Figure 20  Observed and calculated flood hydrographs at the runoff station P.4A. 
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e) Flood hydrograph in 1975  

 

Figure 21  Observed and calculated flood hydrographs at the runoff station P.28. 
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Figure 22  Observed and calculated flood hydrographs at the runoff station P.21. 
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e) Flood hydrograph in 2002  

 

Figure 23  Observed and calculated flood hydrographs at the runoff station P.71. 
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Table 7  Results of the URBS and the NAM model applications. 

 

Runoff Control parameters gained from model calibration and verification processes 

station URBS model NAM model 

 α  β  IL PR IF Lmax CQOF TOF CK1 TG CKBF 

P.20 0.30 9 0 0.21 550 350 0.5 0.4 26 0.4 1,500 

P.4A 0.35 9 0 0.15 700 520 0.5 0.3 48 0.1 1,000 

P.28 0.35 8 0 0.22 400 330 0.5 0.1 42 0.9 2,000 

P.21 0.20 6 0 0.15 600 450 0.6 0.6 30 0.7 5,000 

P.71 0.40 8 0 0.22 350 480 0.5 0.1 40 0.9 3,000 

 

 Table 7 shows that there are 5 parameters necessary to be calibrated for the 

URBS applications. However, the parameter IL (the initial loss) was set to be zero to 

give the best fit between the observed and calculated flood hydrographs. This is 

because the model was used to simulate large flood events that occur in the wet 

season after some previous flood events, whereby soil moisture is expected to be 

saturated. This brings the number of parameters to four compared with six parameters 

that need to be calibrated for the NAM model. As less model parameters are needed 

for model application and slightly better flood hydrograph results were obtained using 

the URBS model, this model was chosen for further investigation to formulate the 

ungauged relationships that could be applied on the ungauged catchments of the upper 

Ping river basin. 

 

2.2  Generalised URBS model parameters and catchment characteristics for 

the upper Ping river basin 

 

         As mentioned in section 5.1, the URBS model has proved to be simpler 

than the NAM model with slightly better calibration results. As such the URBS model 

was calibrated to other 6 runoff stations: P.1, P.77, P.24A, P.29, P.76, and P.73 as 

previously stated. Model parameters gained from model application of all 11 runoff 

stations are summarized in Table 8. The catchment characteristics of each runoff 

station comprising the catchment area (A), main channel length (L), main channel 
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length from the centroid (Lc), channel slope (S), and the percentage of land use 

consisting of agricultural (Ag) and forest areas (F), are presented in Table 9. 

 

Table 8  Model parameters of the 11 runoff stations used in ungauged relationship 

formulation. 

 

Runoff Control parameters of the URBS model 

Station α  β  IL PR IF 

P.20 0.30 9 0 0.21 550 

P.4A 0.35 9 0 0.15 700 

P.28 0.35 8 0 0.22 400 

P.21 0.20 6 0 0.15 600 

P.71 0.40 8 0 0.22 350 

P.1 0.30 7 0 0.17 500 

P.77 0.20 5 0 0.20 350 

P.24A 0.20 5 0 0.25 280 

P.29 0.40 8 0 0.26 200 

P.76 0.40 8 0 0.26 200 

P.73 0.45 9 0 0.25 250 
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Table 9  Catchment characteristics of the 11 runoff stations used in ungauged 

relationship formulation. 

 

Runoff Catchment characteristic parameters 

Station A 

(km2) 

L 

(km) 

Lc 

(km) 

S Agricultural 

Area(%) 

Forest 

Area(%)

P.20 1,355 85.0 44.0 0.00942 17.3 81.9 

P.4A 1,902 148.1 69.0 0.00411 13.9 85.5 

P.28 1,261 81.4 37.1 0.00699 19.6 78.1 

P.21 515 47.3 26.6 0.01213 35.3 63.1 

P.71 1,771 112.4 53.4 0.00666 18.9 78.8 

P.1 1,322 97.9 45.0 0.00058 31.2 61.5 

P.77 547 72.1 26.3 0.00625 12.3 86.0 

P.24A 460 41.9 24.7 0.03510 23.0 75.9 

P.29 1,970 179.0 60.0 0.00271 12.7 84.8 

P.76 1,541 144.4 47.8 0.00277 14.9 82.2 

P.73 2,284 96.1 44.2 0.00038 34.4 55.5 

 

 To apply the URBS model on ungauged catchments, four model parameters 

α , β , PR, and IF need to be correlated with the proposed catchment characteristics 

comprising A, L, Lc, and S using the multiple linear regression analysis. Multiple 

linear regression relationships between each model parameter and catchment 

characteristics are shown in Equations. (91) to (94). These relationships have very 

high correlation coefficients (r) with the values of 0.97, 0.91, 0.95, and 0.94, 

respectively, as shown in Table 10. 

 

SLLA c 456.0003.0001.00002.0163.0 +−++=α     (91) 

SLLA c 574.18057.0018.0002.0499.4 −+−+=β     (92) 

SLLAPR c 498.3006.0002.00001.0176.0 +−++=    (93) 

SLLAIF c 024,10624.28037.7329.094.386 −+−−=    (94) 
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Table 10  Correlation coefficients (r) for the relationships between the model 

parameters and catchment characteristics. 

 

Model 

Parameter 

Four catchment characteristics 

(A, L, Lc and S) 

Six catchment characteristics 

(A, L, Lc, S, Ag, and F) 

 Multiple linear 

regression 

analysis 

Multiple power 

regression 

analysis 

Multiple linear 

regression 

analysis 

Multiple power 

regression 

analysis 

α  0.97 0.98 0.97 0.99 

β  0.91 0.95 0.95 0.96 

IL 0.95 0.79 0.97 0.80 

PR 0.94 0.75 0.96 0.82 

 

 Multiple power regression analysis was then used to create the relationships 

between model parameters and catchment characteristics. The results show that the 

correlation coefficients for the relationships between catchment characteristics and 

model parameters α  and β  slightly increase to 0.98 and 0.95, respectively, as shown 

in Table 10. However, the correlation coefficients between catchment characteristics 

and model parameters PR, and IF reduce to 0.79 and 0.75, respectively, as shown in 

Table 10. Therefore, only the power relationships between catchment characteristics 

and model parameters α  and β  are shown in the Equations. (95) and (96), 

respectively. 

 

)(006.0 041.0608.0179.0784.0 SLLA c
−=α      (95) 

)(484.0 035.0102.0199.0484.0 SLLA c
−=β      (96) 

 

 Finally these four model parameters were correlated with the extra catchment 

characteristics, the percentage of agricultural and forest areas, along with the four 

primary catchment characteristics. The results show that the correlation coefficients 

for the relationships between all six catchment characteristics and the model 

parameters α  and β , using multiple power regression analysis (as shown in 
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Equations. (97) and (98)), slightly increase to 0.99 and 0.96, respectively, as shown in 

Table 10. Similarly, the correlation coefficients of the relationships between the six 

catchment characteristics and model parameters PR, and IF, calculated using linear 

multiple regression analysis (as shown in Equations. (99) and (100)), also slightly 

increase to 0.97 and 0.96, respectively, as shown in Table 10.     

 

)(0002.0 389.0385.0083.0893.0599.0758.0 FAgSLLA c
−=α    (97) 

)(006.0 792.0289.001.0012.0137.0485.0 FAgSLLA c
−=β    (98) 

FAgSLLAPR c 001.0003.0273.3006.0001.00001.0346.0 −−+−++=  (99) 

FAgSLLAIF c 37.2074.26774,1072.24962.5265.0742,1 ++−+−−−=  (100) 

 

 The relationships of the four parameters that use the percentage of agricultural 

and forest areas were not adopted for use because these two catchment characteristics 

are more difficult to measure than the four catchment characteristics A, L, Lc, and S. 

Moreover the correlation coefficients between the URBS model parameters and 

catchment characteristics using the percentage of agricultural and forest areas are not 

improved much compared with not using them. The proposed ungauged relationships 

presented in Equations. (93) to (96) are therefore recommended to be used for 

estimating the model parameters PR, IF,α , and β , respectively, for the ungauged 

catchments in the upper Ping river basin. 

 

 2.3 Verification of the proposed relationships for flood estimation in ungauged 

catchment  

 

        Once the relationships between the URBS model parameters and 

catchment characteristics have been created, flood hydrographs at the 4 runoff stations 

(P.5, P.14, P.75, and P.67) gained from the ungauged and gauged catchment 

approaches were compared to the observed data. The three statistical measures (r, EI, 

and RMSE) were then calculated to identify the effectiveness of the ungauged 

catchment approach. The URBS model parameters PR and IF were evaluated using 

the linear relationships between these parameters and the catchment characteristics A, 
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L, Lc, and S, as shown in Equations. (93) and (94). The model parameters α  and β  

were evaluated using the multiple power relationships between these parameters and 

the catchment characteristics A, L, Lc, and S, as shown in Eqs. (95) and (96).  

 

 Catchment characteristics of the 4 runoff stations used to test the proposed 

relationships are presented in Table 11, and the URBS model parameters assessed 

using the gauged and ungauged catchment approaches for the 4 runoff stations are 

presented in Table 12. The simulation results attained from these two approaches are 

presented by the average statistical measure values shown in Table 13 as well as the 

time series plots in Figures 24 to 27. Percentage differences of the average statistical 

values between the gauged and ungauged approaches were also calculated as shown 

in Table 13. 

 

Table 11  Catchment characteristics for the 4 runoff stations. 

 

Runoff Catchment characteristic parameters 

Station A (km2) L (km) Lc (km) S 

P.5 1,777 97. 9 49.1 0.00392 

P.14 3,853 194.2 99.6 0.00437 

P.75 771 64.1 29.4 0.00088 

P.67 498 35.4 16.3 0.00148 
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Table 12  Estimated URBS model parameters obtained from gauged and ungauged 

catchment approaches. 

 

Runoff Gauged catchment approach Ungauged catchment approach 

Station α  β  PR IF α  β  PR IF 

P.5 0.80 9 0.25 250 0.38 9 0.20 481 

P.14 0.20 5 0.11 500 0.52 12 0.23 560 

P.75 0.30 7 0.17 500 0.22 5 0.18 430 

P.67 0.30 7 0.17 500 0.24 6 0.16 520 

 

Table 13 Average statistical measures corresponding to flood events used in 

verification process. 

 

Runoff 

Station ID 

 

Gauged approach 

Ungauged catchment approach 

(percentage difference from  

gauged approach) 

 r  EI (%) RMSE  

(m3/s) 

r  EI (%) RMSE  

(m3/s) 

P.5 0.85 64.98 26.76 0.75 47.98 31.74 

    (-11.56) (-26.15) (18.63) 

P.14 0.86 67.33 36.13 0.70 36.98 54.24 

    (-18.51) (-45.08) (50.13) 

P.75 0.98 93.16 12.39 0.96 89.35 14.66 

    (-2.49) (-4.09) (18.40) 

P.67 0.96 91.68 26.96 0.96 90.33 29.73 

    (0) (-1.47) (10.27) 
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Figure 24  Observed and calculated flood hydrographs at the runoff station P.5. 
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c) Flood hydrograph in 2002  

 

Figure 25  Observed and calculated flood hydrographs at the runoff station P.14. 
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c) Flood hydrograph in 2003  

 

Figure 26  Observed and calculated flood hydrographs at the runoff station P.75. 
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c) Flood hydrograph in 2003  

 

Figure 27  Observed and calculated flood hydrographs at the runoff station P.67. 

 

 Table 13 shows that the average statistical values at the stations P.75 and P.67 

attained from both approaches are very high with r and EI close to 1 and 100%, 

respectively. It also shows that the estimated flood hydrographs attained from both 

approaches at these two stations are very close with the only small percentage 

difference of the averaged statistical values. These evidences have confirmed an 

ability of the ungauged relationships to be confidently applied for flood estimation for 

the ungauged catchments at these two locations. However, the ungauged approach 

cannot simulate flood hydrographs at the stations P.5 and P.14 as good as the gauged 

approach can. As we can see the averaged statistical values of r and EI attained from 

the ungauged approach are lesser than that of the gauged approach while the RMSE of 

the ungauged approach are higher than that of the gauged approach.  
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 It should be noted that the catchment area of the stations P.75 and P.67 are the 

sub-catchments of the station P.1, which is one of the 11 stations used to formulate 

the ungauged relationships. On the other hand, the stations P.5 and P.14 are the 

independent catchments which have not been used in the formulation process of the 

ungauged relationships. From the results, it could be concluded that the ungauged 

relationships can be confidently applied for flood estimation purpose only for the 

ungauged catchments that lay within the catchment area of the stations which are 

involved in formulating the ungauged relationships. More cautious is needed when 

these relationships are applied for general ungauged catchments located outside the 

basins of the 11 stations used in the formulation process of the ungauged 

relationships. 

 

3. Climatological Z-R Relationship for Radar Rainfall Estimation in the upper 

Ping river basin 

 

 The reflectivity and gauge rainfall data between June and October in 2003 and 

2004 were analysed by the steps as explained in the previous section. The results of 

the mean radar rainfall and mean gauge rainfall using the standard relationship of 

Z=200R1.6 are compared as shown in Figure 28. The statistical measures comparing 

these two sets of data are also calculated as summarized in Table 14. It can be noted 

that the estimated radar rainfall is generally lower than the gauge rainfall. Parameter 

A in the Z-R relationship needs to be adjusted using the Equation (9) with the m value 

equal to 1.868, which is the slope gained from the relationship in Figure 28. The 

adjusted A value is 74, and then the new Z-R relationship; Z = 74R1.6, was used to 

recalculate each step (1 to 4) as explained in the topic “Climatological Z-R 

relationship calibration”. The results showed that the modified Z-R relationship can 

improve the accuracy of the mean daily radar rainfall compared to the application of 

Z=200R1.6. Significant reductions of the statistical measures resulting from the 

calibrated relationship are shown in Table 14. Figure 29 shows that the scatter plot of 

the mean radar rainfall attained from the adjusted relationship (Z = 74R1.6) and mean 

gauge rainfall (see Figure 29) are closer compared to the scatter plot produced using 

the previous relationship (Z = 200R1.6). Radar rainfall estimated using the adjusted 
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relationship (Z = 74R1.6) and gauge rainfall for the daily basis in 2003 and 2004 were 

plotted as shown in Figures 30 and 31, respectively. The figures show that estimated 

radar rainfall is not significantly lower than the gauge rainfall. An agreement between 

estimated radar and gauge rainfall was presented using correlation coefficient (r). The 

results show that the overall correlation coefficients between the estimated radar and 

calculated rain gauge rainfall for the data sets in 2003 and 2004 are 0.857 and 0.912, 

respectively (see Figure 30 and 31), which are acceptable. The calibrated Z-R 

relationship (Z = 74R1.6) is therefore appropriate to be used for an estimation of daily 

radar rainfall in the upper Ping river basin. 
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Figure 28  Scatter plot of mean radar rainfall and mean gauge rainfall based on the 

relationship Z = 200R1.6  . 
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Table 14  Comparisons of the statistical measures gained from the different Z-R 

relationships. 

 

Statistical Measures Z = 200R1.6 Z = 74R1.6 

Mean Error (mm) -3.47 -1.23 

Mean Absolute Error (mm) 3.51 2.30 

Root Mean Square Error (mm) 4.65 3.14 

Bias (mm) 2.33 1.25 
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Figure 29  Scatter plot of mean radar rainfall and mean gauge rainfall based on the 

relationship Z = 74R1.6. 
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Figure 30  Time series plot of mean gauge rainfall and radar rainfall in 2003 using the 

relationship Z = 74R1.6 . 
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Figure 31  Time series plot of mean gauge rainfall and radar rainfall in 2004 using the 

relationship Z = 74R1.6. 
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4. Effect of rain-gauge temporal resolution on the specification of a Z-R 

relationship 

 

4.1  Result of climatological scaling transformation function 

 

       Moment orders q equal to 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 

and 6.0, were used to ascertain the optimal value of η  for the five rainfall datasets 

used. Results from this analysis are illustrated in Figure 32(a). An optimal value of η  

was ascertained as the slope of )log(/)log( tA q
t ∂∂  plotted as a function of moment 

order q in Figure 32(b). Note that Figure 32 represents results for the Sydney (1) data 

alone. Similar results were obtained for the remaining four datasets used. 

 

       The values of the scaling exponent for the other four datasets were equal 

to 0.0548, 0.0566, 0.0574, and 0.0528 for Sydney (2), Sydney (3), Brisbane, and 

Bangkok, respectively. Consequently, a uniform scaling exponent equal to 0.055 was 

proposed in this study. The proposed climatological scaling equation then becomes: 

 

24
055.0)24/( AtAt

−=      (101) 

 

       It should be noted that the data used in the study comprises of a range of 

storms that include short-lived convective events to more sustained stratiform ones. 

While the argument can be made that the mix of these types of events could be 

responsible for the scaling behavior that is observed, the fact that similar scaling 

relations are derived in the three climatologically different locations the study focused 

on, suggests the scaling may be due to other factors. However, future work in this 

research will investigate the effect of storm types on the temporal scaling behavior of 

the Z-R relationship for these two rainfall types using an operational storm 

classification approach of the type outlined in Chumchean et al. (2008). 
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(a)  Scaling of the moments for A parameters      
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Figure 32  Verification of scaling hypothesis for Sydney rainfall data (1) representing 

the period November 2000 – April 2001. 
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4.2  Investigation of impact of attenuation on the temporal scaling relationship 

 

       Attenuation for C-band radar is considered to be a severe problem for 

measurement of high-intensity rainfall (reflectivity > 50 dBZ) (Hildebrand, 1978; 

Austin, 1987). However, the impact of attenuation can be ascertained by studying the 

relationship between gauge and radar rainfall as a function of distance from the radar 

(Burrows and Attwood, 1949). In the results reported below, we investigate the effect 

of attenuation on the temporal scaling behavior of the Z-R relationship by considering 

that attenuation by rain is depending on distance from the radar site. We assume that 

radar data within a given range interval has common attenuation effects. According to 

the spatial distribution of three rain gauge networks of the three cities, three datasets 

for Sydney and one dataset for Brisbane were separated into 0 – 50 km and 50 – 100 

km range intervals, and the dataset for Bangkok was separated into 0 – 15 km and 15 

– 50 km range intervals because the farthermost gauge of the Bangkok network is 

located at around 46 km from the radar. To investigate the effect of attenuation on the 

temporal scaling of the Z-R relationship, the A parameter of each range interval of 

each radar was calculated and the results are presented in Figure 33.  
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Figure 33  Coefficient A of the Z-R relationship at different range intervals, derived 

using a fixed exponent b equal to 1.6, for the Kurnell, the Mt Stapylton, 

and the Pasicharoen radars, as a function of varying temporal rainfall 

resolutions. 

 

       Difference in the A parameters of each range intervals for the same radar 

might be due to the differences in rainfall characteristic of each range, the differences 

being partly due to attenuation. Once, the A parameters of each range intervals were 

derived, the scaling transformation equations for each dataset were also estimated and 

the results are presented in Table 15. Note that, datasets Sydney (1), Sydney (2) and 

Sydney (3) represent data for periods November 2000 – April 2001, August – 

December 2006, and January – May 2007, respectively. 
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Table 15  Scaling exponents at different range intervals for five datasets. 

 

City 0 - 50 km 50 - 100 km 0 - 15 km 15 - 50 km 

Sydney (1) 0.0529 0.0250 - - 

Sydney (2) 0.0513 0.0276 - - 

Sydney (3) 0.0578 0.0273 - - 

Brisbane 0.0577 0.0557 - - 

Bangkok - - 0.0572 0.0114 

 

From the results presented in Table 15, it can be seen that the scaling 

exponents (η ) of the scaling transformation Z-R equations obtained from the data 

lying within far range intervals of the C – band radar (50-100 km for Kurnell radar 

and 15 – 50 for Pasicharoen radar) are lower than using the data lying in the inner 

range intervals. The lower scaling exponent indicates an overestimated scaling 

exponent since attenuation has not been corrected for the data at far ranges. From this 

result it is evident that attenuation has affected the temporal scaling behavior of the Z-

R relations of the C-band radars. However, for the S-band radar, the scaling exponents 

of the two range intervals are not significant different. This confirms the temporal 

scaling hypothesis of the Z-R relationship since attenuation problem can be neglected 

for the S-band radar. 

 

4.3  Verification of proposed scaling transformation function 

 

        As the proposed scaling transformation is based on the assumption of 

distributional equality, it can be expected that the function leads to reasonable results 

when applied to ascertain specified quantiles of the data. Consequently, the scaling 

function was verified by using it to ascertain the probability distribution of the 

maximum intensity of rainfall burst as a function of rainfall duration, and compared to 

the distribution of similar maximum intensity of rainfall burst observed in each rain 
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gauge location. It is to be noted that the term “rainfall burst” has been used to 

represent rainfall bursts of fixed durations. The 24-hour A parameter value was used 

as a reference, based on which parameters for other temporal aggregation periods 

were estimated. Additionally, to show an effectiveness of the proposed scaled Z-R 

transformation equation, the frequency distributions of the maximum radar rainfall 

obtained from the scaling and 24-hour Z-R relationships were also compared with rain 

gauge data as presented in Figures 34 to 36. It can be noted that the distributional 

attributes of the estimated maximum radar rainfall are more similar to those of the 

rain gauge rainfall than the maximum radar rainfall obtained from the 24-hour Z-R 

relationship. This lends further credibility to the assumptions that were used to 

formulate the proposed scaling transformation function. 

 

The mean square errors for the maximum intensity of rainfall bursts for six 

time resolutions (1-, 2-, 4-, 6-, 12-, and 24-hour) for the combined Sydney data, the 

Brisbane data, and the Bangkok data are presented in Table 16. In addition to this, the 

mean square error for the full rainfall data excluding zero radar rainfall was also 

calculated. The “optimal” case in the table refers to the estimation of the optimal A 

coefficient based on mean absolute error as described in section 2. For contrast, 

values of the error that would be expected were the 24 hour A parameter be used, are 

also given. Percentages of error in radar rainfall estimates based on two different A 

parameters that were derived from the temporal scaling transformation equation and 

the 24-hour A parameter have been calculated as shown in Table 16. From this result, 

it is evident that for all rainfall durations of all three radar, errors in extreme radar 

rainfall of the scaling case are less than the 24-hour case. The 24-hour A parameter 

gives higher errors, especially at high rainfall intensities, and at low temporal 

resolutions. Using the scaling Z-R relationship can reduce error in extreme radar 

rainfall especially at the finer temporal resolution. However, the improvement in radar 

rainfall estimates when considering all radar data excluding zero values are not 

significant if the scaling Z-R relationship has been used.  
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Figure 34  Frequency of maximum gauge rainfall and the scaling transformation 

based estimated radar rainfall for 1-, 6-, and 24-hour durations for Sydney 

dataset. 
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Figure 35  Frequency of maximum gauge rainfall and the scaling transformation 

based estimated radar rainfall for 1-, 6-, and 24-hour durations for 

Brisbane dataset. 
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Figure 36  Frequency of maximum gauge rainfall and the scaling transformation 

based estimated radar rainfall for 1-, 6-, and 24hours durations for 

Bangkok dataset. 
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Table 16 Effectiveness of the scaling function for estimation of radar rainfall at 

varying temporal resolutions. 

 

a) Sydney data 

 

Mean Square Error (MSE) Time Resolution 

 (mm hr-1)2 1 h 2 h 4 h 6 h 12 h 24 h 

MRR – optimal (1) 296.82 107.45 45.57 24.36 12.49 5.08 

MRR – scaling (2) 307.37 107.99 45.65 24.37 12.49 5.08 

(% Error between (2) and (1)) (3.55%) (0.50%) (0.18%) (0.04%) (0.01%) (0.00%) 

MRR – 24 h parameter (3) 386.37 121.69 46.34 24.52 12.54 5.08 

(% Error between (3) and (1)) (30.17%) (13.25%) (1.68%) (0.66%) (0.39%) (0.00%) 

RR – optimal (4) 11.58 5.07 2.05 1.36 0.78 0.48 

RR – scaling (5) 11.59 5.08 2.06 1.36 0.78 0.48 

(% Error between (5) and (4)) (0.05%) (0.03%) (0.03%) (0.10%) (0.02%) (0.00%) 

RR – 24 h parameter (6) 11.71 5.11 2.07 1.36 0.78 0.48 

(% Error between (6) and (4)) (1.08%) (0.71%) (0.77%) (0.34%) (0.28%) (0.00%) 

 

Note: MRR – optimal = maximum radar rainfall (optimal), MRR - scaling = 

maximum radar rainfall (scaling), MRR - 24 h parameter = maximum radar rainfall 

(24 hour parameter), RR – optimal = radar rainfall excluding zeroes (optimal), RR - 

scaling = radar rainfall excluding zeroes (scaling), and RR - 24 h parameter = radar 

rainfall excluding zeroes (24 hour parameter). 
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Table 16  (Continued) 

 

b) Brisbane data 

 

Mean Square Error (MSE) Time Resolution 

 (mm hr-1)2 1 h 2 h 4 h 6 h 12 h 24 h 

MRR – optimal (1) 167.69 89.51 19.22 7.96 5.31 1.50 

MRR – scaling (2) 167.95 90.33 19.36 7.96 5.35 1.50 

(% Error between (2) and (1)) (0.15%) (0.92%) (0.71%) (0.00%) (0.78%) (0.00%) 

MRR – 24 h parameter (3) 180.26 96.68 20.23 8.01 5.40 1.50 

(% Error between (3) and (1)) (7.49%) (8.01%) (5.24%) (0.57%) (1.72%) (0.00%) 

RR – optimal (4) 0.77 0.59 6.32 0.99 0.57 0.24 

RR – scaling (5) 0.77 0.59 6.32 0.99 0.57 0.24 

(% Error between (5) and (4)) (0.01%) (0.00%) (0.01%) (0.00%) (0.26%) (0.00%) 

RR – 24 h parameter (6) 0.78 0.59 6.33 1.00 0.58 0.24 

(% Error between (6) and (4)) (0.62%) (0.24%) (0.15%) (0.75%) (0.74%) (0.00%) 

 

Note: MRR – optimal = maximum radar rainfall (optimal), MRR - scaling = 

maximum radar rainfall (scaling), MRR - 24 h parameter = maximum radar rainfall 

(24 hour parameter), RR – optimal = radar rainfall excluding zeroes (optimal), RR - 

scaling = radar rainfall excluding zeroes (scaling), and RR - 24 h parameter = radar 

rainfall excluding zeroes (24 hour parameter). 

 



 135

Table 16  (Continued) 

 

c) Bangkok data 

 

Mean Square Error (MSE) Time Resolution 

 (mm hr-1)2 1 h 2 h 4 h 6 h 12 h 24 h 

MRR – optimal (1) 376.74 104.93 24.50 22.22 6.48 2.41 

MRR – scaling (2) 376.90 105.03 24.53 22.24 6.49 2.41 

(% Error between (2) and (1)) (0.04%) (0.10%) (0.12%) (0.09%) (0.15%) (0.00%) 

MRR – 24 h parameter (3) 387.54 107.05 25.19 22.89 6.50 2.41 

(% Error between (3) and (1)) (2.87%) (2.02%) (2.82%) (3.02%) (0.31%) (0.00%) 

RR – optimal (4) 95.47 28.61 8.66 3.31 1.38 0.35 

RR – scaling (5) 95.49 28.61 8.66 3.31 1.38 0.35 

(% Error between (5) and (4)) (0.02%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%) 

RR – 24 h parameter (6) 95.78 28.64 8.68 3.32 1.38 0.35 

(% Error between (6) and (4)) (0.32%) (0.10%) (0.23%) (0.30%) (0.00%) (0.00%) 

 

Note: MRR – optimal = maximum radar rainfall (optimal), MRR - scaling = 

maximum radar rainfall (scaling), MRR - 24 h parameter = maximum radar rainfall 

(24 hour parameter), RR – optimal = radar rainfall excluding zeroes (optimal), RR - 

scaling = radar rainfall excluding zeroes (scaling), and RR - 24 h parameter = radar 

rainfall excluding zeroes (24 hour parameter). 

 

5.  Improvement in runoff estimation accuracy using radar 

 

The results of the climatological Z-R relationship for the upper Ping river 

basin (Z = 74R1.6) and the uniform scaling exponent (η  = 0.055) as described in 

section 3 and 4, respectively, were used for the analysis in this section. The 

relationship Z = 74R1.6 was first used to estimate daily radar rainfall, and the 24-A 

parameter (A=74) was later substituted into Equation (89) for hourly radar rainfall 

without scaling logic. Finally, the proposed scaling exponent (η  = 0.055) and the 

calculated A24new was substituted into Equation (90) for hourly radar rainfall with 

scaling logic. Results of the URBS model calibration and verification, comparison of 
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model performance using four different rainfall datasets, and investigation of impact 

of sub-daily rainfall variability on the accuracy of runoff estimation are presented as 

follows. 

 

5.1  Results of model calibration and verification 

 

        Control parameters of each runoff station are different for each rainfall 

type and they are presented in Table 17. By using these parameters for the model 

calibration and verification, the average statistical values within 3 flow periods (2003-

2005) are summarized in Table 18. It shows that the URBS model can reasonably 

simulate the hydrographs at these 6 runoff stations with the average r and EI values of 

around 0.74 and 62.56 %, respectively, while the average RMSE and RMSEpeak are 

within a reasonable range. However the statistical values for each station vary 

depending on the rainfall types. The daily radar rainfall (DRR) seems to produce flow 

hydrograph closer to the observed data than those produced by the daily rain gauge 

rainfall (DGR) data. The hourly radar rainfall both without (HRR) and with scaling 

logic (HRRS) can further improve the accuracy of flow hydrographs over the daily 

radar rainfall, respectively. Time series plot between the observed and calculated flow 

hydrographs using different rainfall datasets for the 6 runoff stations are shown in 

Figures 37 to 42. Further discussion on the comparison of model performance using 

four different rainfall datasets for each flow period is described in the next section. 
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Table 17  Model parameters of the 6 runoff stations with different rainfall types. 

 

Runoff Type of Control parameters of the URBS model 

Station rainfall α  β  IL PR IF 

P.21 DGR 0.20 7 20 0.10 800 

 DRR 0.20 7 10 0.10 1,000 

 HRR 0.40 7 50 0.10 900 

 HRRS 0.40 7 10 0.12 900 

P.71 DGR 0.30 8 0 0.05 900 

 DRR 0.30 8 0 0.08 1,100 

 HRR 0.30 8 0 0.08 1,000 

 HRRS 0.30 8 0 0.10 1,000 

P.77 DGR 0.20 8 80 0.07 1,000 

 DRR 0.10 7 50 0.05 1,500 

 HRR 0.10 8 100 0.05 1,500 

 HRRS 0.10 8 50 0.06 1,500 

P.24A DGR 0.30 7 10 0.10 800 

 DRR 0.30 7 10 0.04 1,100 

 HRR 0.30 6 60 0.03 1,100 

 HRRS 0.30 6 20 0.04 1,000 

P.73 DGR 0.45 8 10 0.17 800 

 DRR 0.40 7 10 0.17 800 

 HRR 0.40 8 25 0.17 1,000 

 HRRS 0.40 7 10 0.18 800 

P.14 DGR 0.10 8 50 0.05 800 

 DRR 0.10 8 50 0.05 800 

 HRR 0.10 7 20 0.08 900 

 HRRS 0.10 7 20 0.10 900 
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Table 18  Average statistical measures for each rainfall type at 6 runoff stations. 

 

Station Type of rainfall Average statistical values 

name   r EI (%) RMSE RMSEpeak

P.21 DGR 0.684 46.744 4.418 7.040 

 DRR 0.766 65.781 3.545 5.612 

 HRR 0.787 60.813 3.728 4.770 

 HRRS 0.787 67.819 3.446 4.969 

P.71 DGR 0.649 53.272 10.173 14.019 

 DRR 0.779 61.907 8.179 8.839 

 HRR 0.787 58.085 8.205 8.752 

 HRRS 0.790 57.951 7.816 7.747 

P.77 DGR 0.684 39.473 3.024 7.141 

 DRR 0.726 46.932 3.520 6.577 

 HRR 0.731 45.512 3.411 6.738 

 HRRS 0.732 52.728 3.288 6.585 

P.24A DGR 0.637 53.746 3.190 7.407 

 DRR 0.679 60.040 3.001 6.138 

 HRR 0.697 66.679 2.674 6.552 

 HRRS 0.700 67.337 2.665 6.493 

P.73 DGR 0.927 87.186 48.594 71.697 

 DRR 0.930 89.346 45.006 60.450 

 HRR 0.929 90.244 43.882 61.310 

 HRRS 0.932 91.682 42.957 61.428 

P.14 DGR 0.654 25.195 27.970 47.558 

 DRR 0.586 70.821 20.074 45.555 

 HRR 0.632 64.812 21.279 37.743 

 HRRS 0.629 72.047 19.172 40.434 
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Figure 37  Observed and calculated flow hydrographs at the runoff station P.21. 
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Figure 38  Observed and calculated flow hydrographs at the runoff station P.71. 
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Figure 39  Observed and calculated flow hydrographs at the runoff station P.77. 
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Figure 40  Observed and calculated flow hydrographs at the runoff station P.24A. 
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Figure 41  Observed and calculated flow hydrographs at the runoff station P.73. 
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Figure 42  Observed and calculated flow hydrographs at the runoff station P.14. 
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5.2  Comparison of model performance using four different rainfall datasets  

 

         RMSE and RMSEpeak were selected as the indicators to further evaluate 

the URBS model performance in runoff estimation using four different rainfall 

datasets as the input data. Table 19 shows the percent improvement in the accuracy of 

runoff estimation using each rainfall type compared with other types. It shows that 

RMSEpeak calculated using the three types of radar rainfall are much lower than using 

the daily gauge rainfall (DGR) data at all runoff stations. The average value of percent 

improvement in RMSEpeak for all events at all stations varies between 4.21% and 

44.74% with the average of around 19.45%. Average values of percent improvement 

in RMSEpeak of using DRR, HRR, and HRRS instead of DGR for all 6 stations are 

around 17.16%, 20.49%, and 20.73%, respectively. RMSE calculated using three 

types of radar rainfall are also lower than using DGR for 5 stations except for P.77. 

The average value of percent improvement in RMSE within 5 stations varies between 

5.91% and 31.46% with the average of around 18.02%. Average values of percent 

improvement in RMSE of using DRR, HRR, and HRRS instead of DGR for 5 stations 

are around 16.18%, 16.95%, and 20.93%, respectively. These results confirm that all 

radar rainfall data (DRR, HRR, and HRRS) tends to produce more accurate runoff 

hydrographs (both overall hydrograph and peak flow) than the DGR. Moreover the 

HRRS and HRR also seem to provide a little more realistic results than the DRR, 

respectively. 

 

         The comparison between DRR and HRRS can be seen by the average 

values of percent improvement in RMSE of using HRRS instead of DRR for all 6 

stations varying between 2.78% and 11.19% with the average of around 5.68%. 

However, RMSEpeak of using HRRS instead of DRR improved only at stations P.21, 

P.71, and P.14 with the percent improvement of around 11.45%, 12.36%, and 

11.24%, respectively, but reduced at stations P.77, P.24A, and P.73 with the percent 

reduction of around 0.13%, 5.79%, and 1.62%, respectively. The HRRS compared to 

the DRR therefore tends to improve the accuracy of the overall hydrograph better than 

the peak flow. On the other hand, the HRR does not have any consistency in 

improving the accuracy of both the overall hydrograph and peak flow compared to the 
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DRR, because there are both the percent improvement and reduction for RMSE and 

RMSEpeak within those 6 stations. It can be concluded that we rather use DRR instead 

of HRR and use HRRS instead of DRR for runoff estimation. 

 

         The comparison between HRR and HRRS can be seen by the average 

values of percent improvement in RMSE of using HRRS instead of HRR for all 6 

stations varying between 0.33% and 9.91% with the average of around 4.71%. On the 

other hand, the HRRS does not have any consistency in improving the accuracy of 

peak flow compared to the HRR, because there are both the percent improvement and 

percent reduction of RMSEpeak within those 6 stations. The results confirm that using 

HRRS instead of using the HRR can improve the accuracy in overall hydrograph 

more consistency than the peak flow. The scaling logic is therefore an effective 

algorithm to be useful for preparing the HRRS and can be applied for improving the 

accuracy of the overall hydrograph better than the peak flow. 
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Table 19  Improvement of the hourly flow hydrograph estimates using daily gauge 

rainfall (DGR), daily radar rainfall (DRR), hourly radar rainfall without 

scaling logic (HRR), and hourly radar rainfall with scaling logic (HRRS) 

at varying runoff periods. 

 

a) Runoff stations P.21 

 

Overall root mean square error 2003 2004 2005 Average 

(RMSE – m3/s)     

DGR (1) 2.82 5.15 5.28 4.42 

DRR (2) 3.12 2.82 4.69 3.54 

(% improvement between (2) and (1) ) (-10.66%) (45.31%) (11.11%) (19.77%) 

HRR (3) 3.15 2.86 5.18 3.73 

(% improvement between (3) and (1) ) (-11.49%) (44.53%) (1.93%) (15.63%) 

(% improvement between (3) and (2) ) (-0.75%) (-1.42%) (-10.33%) (-5.16%) 

HRRS (4) 3.13 2.67 4.53 3.45 

(% improvement between (4) and (1) ) (-11%) (48.08%) (14.19%) (22%) 

(% improvement between (4) and (2) ) (-0.31%) (5.06%) (3.46%) (2.78%) 

(% improvement between (4) and (3) ) (0.44%) (6.39%) (12.5%) (7.55%) 

Average root mean square error  2003 2004 2005 Average 

of peak flow event (RMSEpeak - m3/s)     

DGR (1) 8.62 5.45 7.06 7.04 

DRR (2) 9.20 2.98 4.65 5.61 

(% improvement between (2) and (1) ) (-6.83%) (45.25%) (34.13%) (20.29%) 

HRR (3) 8.87 1.92 3.51 4.77 

(% improvement between (3) and (1) ) (-3%) (64.66%) (50.25%) (32.24%) 

(% improvement between (3) and (2) ) (3.59%) (35.44%) (24.48%) (15%) 

HRRS (4) 8.96 2.31 3.63 4.97 

(% improvement between (4) and (1) ) (-4.01%) (57.53%) (48.52%) (29.41%) 

(% improvement between (4) and (2) ) (2.64%) (22.44%) (21.85%) (11.45%) 

(% improvement between (4) and (3) ) (-0.98%) (-20.15%) (-3.49%) (-4.17%) 
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Table 19  (Continued) 

 

b) Runoff stations P.71 

 

Overall root mean square error 2003 2004 2005 Average 

(RMSE - m3/s)     

DGR (1) 8.33 9.69 12.50 10.17 

DRR (2) 6.43 9.18 8.92 8.18 

(% improvement between (2) and (1) ) (22.75%) (5.3%) (28.6%) (19.6%) 

HRR (3) 6.59 9.69 8.34 8.21 

(% improvement between (3) and (1) ) (20.86%) (0.1%) (33.27%) (19.35%) 

(% improvement between (3) and (2) ) (-2.44%) (-5.5%) (6.54%) (-0.32%) 

HRRS (4) 6.63 9.69 7.13 7.82 

(% improvement between (4) and (1) ) (20.36%) (0.05%) (42.99%) (23.17%) 

(% improvement between (4) and (2) ) (-3.09%) (-5.55%) (20.15%) (4.44%) 

(% improvement between (4) and (3) ) (-0.63%) (-0.05%) (14.56%) (4.75%) 

Average root mean square error  2003 2004 2005 Average 

of peak flow event (RMSEpeak - m3/s)     

DGR (1) 19.87 13.37 8.82 14.02 

DRR (2) 11.50 9.45 5.57 8.84 

(% improvement between (2) and (1) ) (42.13%) (29.33%) (36.83%) (36.95%) 

HRR (3) 10.07 9.06 7.13 8.75 

(% improvement between (3) and (1) ) (49.32%) (32.23%) (19.2%) (37.57%) 

(% improvement between (3) and (2) ) (12.42%) (4.1%) (-27.91%) (0.99%) 

HRRS (4) 10.32 8.85 4.07 7.75 

(% improvement between (4) and (1) ) (48.07%) (33.8%) (53.83%) (44.74%) 

(% improvement between (4) and (2) ) (10.26%) (6.32%) (26.91%) (12.36%) 

(% improvement between (4) and (3) ) (-2.47%) (2.31%) (42.86%) (11.48%) 
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Table 19  (Continued) 

 

c) Runoff stations P.77 

 

Overall root mean square error 2003 2004 2005 Average 

(RMSE - m3/s)     

DGR (1) 1.87 2.67 4.53 3.02 

DRR (2) 1.63 2.54 6.39 3.52 

(% improvement between (2) and (1) ) (12.96%) (4.73%) (-40.99%) (-16.4%) 

HRR (3) 1.70 2.56 5.98 3.41 

(% improvement between (3) and (1) ) (9.47%) (4.02%) (-31.92%) (-12.8%) 

(% improvement between (3) and (2) ) (-4.01%) (-0.74%) (6.44%) (3.09%) 

HRRS (4) 1.59 2.38 5.89 3.29 

(% improvement between (4) and (1) ) (15%) (10.77%) (-30.01%) (-8.72%) 

(% improvement between (4) and (2) ) (2.35%) (6.34%) (7.79%) (6.6%) 

(% improvement between (4) and (3) ) (6.11%) (7.03%) (1.44%) (3.62%) 

Average root mean square error  2003 2004 2005 Average 

of peak flow event (RMSEpeak - m3/s)     

DGR (1) 5.03 3.80 12.59 7.14 

DRR (2) 4.64 3.01 12.08 6.58 

(% improvement between (2) and (1) ) (7.77%) (20.84%) (4.04%) (7.89%) 

HRR (3) 5.07 3.03 12.11 6.74 

(% improvement between (3) and (1) ) (-0.74%) (20.28%) (3.77%) (5.64%) 

(% improvement between (3) and (2) ) (-9.23%) (-0.71%) (-0.27%) (-2.45%) 

HRRS (4) 4.61 3.23 11.92 6.59 

(% improvement between (4) and (1) ) (8.42%) (15.05%) (5.32%) (7.77%) 

(% improvement between (4) and (2) ) (0.7%) (-7.31%) (1.34%) (-0.13%) 

(% improvement between (4) and (3) ) (9.09%) (-6.55%) (1.6%) (2.26%) 
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Table 19  (Continued) 

 

d) Runoff stations P.24A 

 

Overall root mean square error 2003 2004 2005 Average 

(RMSE - m3/s)     

DGR (1) 3.21 3.40 2.96 3.19 

DRR (2) 2.83 3.64 2.54 3.00 

(% improvement between (2) and (1) ) (11.93%) (-7.06%) (14.29%) (5.91%) 

HRR (3) 2.34 3.22 2.46 2.67 

(% improvement between (3) and (1) ) (26.97%) (5.3%) (16.93%) (16.17%) 

(% improvement between (3) and (2) ) (17.07%) (11.55%) (3.08%) (10.9%) 

HRRS (4) 2.40 3.19 2.41 2.67 

(% improvement between (4) and (1) ) (25.27%) (6.24%) (18.59%) (16.44%) 

(% improvement between (4) and (2) ) (15.15%) (12.42%) (5.02%) (11.19%) 

(% improvement between (4) and (3) ) (-2.32%) (0.98%) (2%) (0.33%) 

Average root mean square error  2003 2004 2005 Average 

of peak flow event (RMSEpeak - m3/s)     

DGR (1) 7.52 10.14 4.56 7.41 

DRR (2) 4.18 8.67 5.56 6.14 

(% improvement between (2) and (1) ) (44.4%) (14.51%) (-22.01%) (17.14%) 

HRR (3) 5.23 8.75 5.68 6.55 

(% improvement between (3) and (1) ) (30.54%) (13.66%) (-24.53%) (11.54%) 

(% improvement between (3) and (2) ) (-24.94%) (-1%) (-2.06%) (-6.76%) 

HRRS (4) 4.73 9.04 5.71 6.49 

(% improvement between (4) and (1) ) (37.2%) (10.85%) (-25.36%) (12.34%) 

(% improvement between (4) and (2) ) (-12.96%) (-4.28%) (-2.74%) (-5.79%) 

(% improvement between (4) and (3) ) (9.59%) (-3.25%) (-0.66%) (0.91%) 
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Table 19  (Continued) 

 

e) Runoff stations P.73 

 

Overall root mean square error 2003 2004 2005 Average 

(RMSE - m3/s)     

DGR (1) 71.76 46.72 27.30 48.59 

DRR (2) 66.95 43.76 24.32 45.01 

(% improvement between (2) and (1) ) (6.71%) (6.34%) (10.95%) (7.38%) 

HRR (3) 66.51 42.54 22.60 43.88 

(% improvement between (3) and (1) ) (7.32%) (8.93%) (17.24%) (9.7%) 

(% improvement between (3) and (2) ) (0.66%) (2.77%) (7.07%) (2.5%) 

HRRS (4) 68.05 42.47 18.35 42.96 

(% improvement between (4) and (1) ) (5.17%) (9.09%) (32.79%) (11.6%) 

(% improvement between (4) and (2) ) (-1.65%) (2.94%) (24.53%) (4.55%) 

(% improvement between (4) and (3) ) (-2.33%) (0.18%) (18.79%) (2.11%) 

Average root mean square error  2003 2004 2005 Average 

of peak flow event (RMSEpeak - m3/s)     

DGR (1) 112.27 94.06 10.76 72.36 

DRR (2) 98.74 63.07 19.54 60.45 

(% improvement between (2) and (1) ) (12.05%) (32.95%) (-81.64%) (16.46%) 

HRR (3) 96.67 68.65 18.61 61.31 

(% improvement between (3) and (1) ) (13.9%) (27.01%) (-72.97%) (15.28%) 

(% improvement between (3) and (2) ) (2.1%) (-8.86%) (4.77%) (-1.42%) 

HRRS (4) 102.23 68.85 13.21 61.43 

(% improvement between (4) and (1) ) (8.95%) (26.8%) (-22.73%) (15.11%) 

(% improvement between (4) and (2) ) (-3.53%) (-9.17%) (32.43%) (-1.62%) 

(% improvement between (4) and (3) ) (-5.75%) (-0.29%) (29.05%) (-0.19%) 
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Table 19  (Continued) 

 

f) Runoff stations P.14 

 

Overall root mean square error 2003 2004 2005 Average 

(RMSE - m3/s)     

DGR (1) 15.12 26.97 41.81 27.97 

DRR (2) 15.18 26.54 18.51 20.07 

(% improvement between (2) and (1) ) (-0.37%) (1.62%) (55.74%) (28.23%) 

HRR (3) 13.16 31.86 18.81 21.28 

(% improvement between (3) and (1) ) (12.96%) (-18.13%) (55.01%) (23.92%) 

(% improvement between (3) and (2) ) (13.28%) (-20.08%) (-1.64%) (-6%) 

HRRS (4) 12.58 26.85 18.09 19.17 

(% improvement between (4) and (1) ) (16.85%) (0.46%) (56.74%) (31.46%) 

(% improvement between (4) and (2) ) (17.15%) (-1.18%) (2.26%) (4.5%) 

(% improvement between (4) and (3) ) (4.46%) (15.74%) (3.84%) (9.91%) 

Average root mean square error  2003 2004 2005 Average 

of peak flow event (RMSEpeak - m3/s)     

DGR (1) 39.29 49.25 54.14 47.56 

DRR (2) 38.77 42.40 55.50 45.56 

(% improvement between (2) and (1) ) (1.33%) (13.9%) (-2.51%) (4.21%) 

HRR (3) 23.67 48.08 41.48 37.74 

(% improvement between (3) and (1) ) (39.76%) (2.37%) (23.38%) (20.64%) 

(% improvement between (3) and (2) ) (38.94%) (-13.39%) (25.25%) (17.15%) 

HRRS (4) 33.55 40.66 47.09 40.43 

(% improvement between (4) and (1) ) (14.61%) (17.43%) (13.02%) (14.98%) 

(% improvement between (4) and (2) ) (13.45%) (4.1%) (15.15%) (11.24%) 

(% improvement between (4) and (3) ) (-41.75%) (15.43%) (-13.52%) (-7.13%) 
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CONCLUSION AND RECOMMENDATIONS 
 

 The conclusion and recommendation for the study on “Applications of rain 

gauge and radar rainfall to a hydrological model for flood estimation” are described as 

in the followings.  

 

1.  Hydrological model selection 

 

 The first objective of this study is to select the most suitable hydrologic model 

for flood estimation among four well known hydrological models namely NAM, 

HEC-HMS, URBS, and SWAT models. The selection criteria were set and the scores 

were given to each criterion and model. The results show that the URBS model 

obtains the highest total score but it is not much higher than the other three models. 

However, a special training opportunity given by the experts on the URBS model 

application at the Water Resources Department encouraged the author to finally 

choose the URBS model for further study. 

 

2.  Testing the URBS model performance and extending its application to the 

ungauged catchments 

 

After the URBS model was chosen for flood estimation, it was applied to 

simulate flood hydrographs at P.20, P.4A, P.28, P.21, and P.71 stations using rain 

gauge rainfall as the input data. The NAM model, which has been accepted for flood 

estimation world wide, was also applied at these 5 stations. These two models have 

shown promising results of flood hydrograph estimations which are very close to the 

observed data. The URBS model was later applied at other 6 stations in the study 

basin. To be able to extend the model application on the ungauged catchments in the 

upper Ping rive basin, the ungauged relationships between its parameters and 

catchment characteristics were formulated. Since there are only 4 model parameters 

(α , β , PR and IF) needed for the URBS model for flood estimation, these 

parameters was therefore used to formulate the ungauged relationships for flood 

estimation of the ungauged catchments in the upper Ping river basin. Four catchment 
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characteristics consisting of the catchment area (A), main channel length (L), main 

channel length from the centroid (Lc), and channel slope (S) were recommended to be 

suitable for creating the relationships with the 4 parameters in this study. Four 

proposed relationships for estimating the URBS model parameters PR, IF, α  and β  

for ungauged catchment in the upper Ping river basin are presented in Equations. (93) 

to (96), respectively. For the application of the proposed ungauged relationships for 

flood estimation in the upper Ping river basin, it is evident that the proposed ungauged 

relationships can be efficiently applied for flood estimation only for the ungauged 

catchments which are the sub-catchments of the 11 stations used for formulating the 

ungauged relationships.  

 

 It should be recommended that the form of the ungauged relationships 

possibly vary depending on the catchment and flood characteristics, which are used in 

formulating the relationships. The methodology used in formulating the ungauged 

relationships proposed in this study should be performed in other catchments in 

Thailand’s river basins to find out the efficiency of the proposed method that would 

be a helpful tool for flood estimation of the ungauged catchments in Thailand.  

 

3.  Climatological Z-R Relationship for Radar Rainfall Estimation in the upper 

Ping river basin 

 

 Since most of rainfall stations located in and around the upper Ping river basin 

are non-automatic stations, the climatological Z-R relationship was therefore 

determined by uses of daily gauge rainfall at 42 stations and the reflectivity data at the 

Omkoi radar station. During the calibration procedure, parameter A was adjusted to 

minimize four statistical measures comprising the Mean Error, Mean Absolute Error, 

Root Mean Square Error, and Bias, whereas parameter b was set as a constant of 1.6. 

The results show that the climatological Z-R relationship as in the form of Z=74R1.6 

give more accurate results of mean daily radar rainfall than the conventional 

relationship of Z=200R1.6 used for the Omkoi radar can provide. The climatological 

Z-R relationship of Z=74R1.6 is therefore the appropriate equation for radar rainfall 

assessment in the upper Ping river basin. Within the calibration period (between June 
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and October in 2003 and 2004), this relationship produced the minimum Mean Error, 

Mean Absolute Error, Root Mean Square Error, and Bias of approximately -1.23, 

2.30, 3.14, and 1.25 mm, respectively. Daily radar rainfall in 2003 and 2004 were 

then computed using this relationship and were compared to the daily gauge rainfall 

in the form of time series plot. Even the estimated radar rainfall tend to be a bit lower 

than the gauge rainfall; the overall results are acceptable with the correlation 

coefficient between the estimated radar and gauge rainfall of around 0.857 and 0.912, 

respectively.  

 

 It should be noted that this study aims to investigate the suitable Z-R 

relationship for daily radar rainfall estimation in the upper Ping river basin to reduce 

some radar rainfall errors caused by Z-R conversion. This proposed climatological 

relationship (Z=74R1.6) represents the average relationship for Omkoi radar station 

and can also be used as an initial relationship to convert measured reflectivity into 

daily radar rainfall. However, the parameters A in the Z-R relationship usually change 

in both space and time; the applications of the proposed relationship to estimate daily 

rainfall at different storm events especially in real time environment possibly have a 

number of uncertainties. To improve the accuracy of radar rainfall, the estimated radar 

rainfall calculated by the proposed Z-R relationship should be adjusted by applying a 

mean field bias correction technique (Battan, 1973; Wilson, 1970; Brandes, 1975; 
Collinge, 1991; Seo and Breidenbach, 2002; Chumchean et al., 2006). The adjusted 

radar rainfall will then be used as the input data for the selected rainfall-runoff model 

for flood estimation in the upper Ping river basin. 

 

4. Effect of rain-gauge temporal resolution on the specification of a Z-R 

relationship 

 

To study the effect of using rain gauge data of different temporal resolutions 

for calibrating climatological Z-R relationships, different climatological Z-R 

relationships were estimated using rainfall aggregated over 1 to 24 hours. Weather 

radar - which has sufficient continuous tipping-bucket gauge stations located within 

the radar range - was selected for the analysis. This study, radar reflectivity data from 



 156

the Kurnell, the Mt Stapylton, and the Pasicharoen radars located in Sydney, 

Brisbane, and Bangkok, respectively, and corresponding rain gauges data in the three 

cities, were used in the analysis. From the results, it can be concluded that the A 

parameters of the Z-R relationship of Sydney, Brisbane, and Bangkok radar stations 

tend to decrease with a decrease in the rainfall temporal resolution. The decrease in 

the A parameters can be described through a simple scaling law and a scaling 

transformation function derived. The scaling exponents for five datasets representing 

three locations (Sydney, Brisbane, and Bangkok) are lie in the vicinity of 0.055. 

Hence a climatological scaling law with exponent equal to 0.055 is proposed.  

 

Since the Sydney and Bangkok radars are the C-band radars - which 

attenuation is considered to be a severe problem for measurement of high-intensity 

rainfall - the impact of attenuation on the temporal scaling relationship was therefore 

investigated. The results can be concluded that attenuation might have some effects 

on the climatological scaling component for C-band radar at far range from the radar 

site; however, scaling hypothesis appears to be valid for the S-band radar. 

 

For the verification of the proposed scaling transformation function, it found 

that the equation with scaling exponent 0.055 exhibits significant improvements in 

estimating extreme rainfall, especially at fine temporal resolutions, in contrast to the 

accuracy obtained when using the A parameter that is based on 24 hour rainfall. For 

the extreme rainfall, this accuracy decreases as one proceeds to higher resolutions.  

 

Finally, it can be concluded that the proposed scaling relationship is consistent 

across multiple locations but exhibits variations with range in radars where 

attenuation is a significant issue. The use of this relationship is promising especially 

in locations with limited short-duration rain gauge measurements and attenuation 

corrected radar measurements. 
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5.  Improvement in runoff estimation accuracy using radar 

 

 The highlight of this research for improving an accuracy of flood estimation 

using radar rainfall approximation at selected runoff stations (P.21, P.71, P.77, P.24A, 

P.73, and P.14) in the upper Ping river basin is explained in this item. An 

investigation was carried out by using the daily gauge rainfall, and the daily and 

hourly radar rainfall as the input data for the URBS model. The areal daily gauge 

rainfall (DGR) for each sub-catchment was approximated using the Thiessen polygon 

technique. The daily radar rainfall (DRR) was calculated using the proposed Z-R 

relationship at the Omkoi radar (Z=74R1.6) and the mean field bias correction method. 

The hourly radar rainfall without scaling logic (HRR) was estimated using the update 

daily Z-R relationship which was changed with day depending upon the mean field 

bias used for correcting daily radar rainfall. Finally, the scaling transformation 

equation ( 24
055.0)24/( AtAt

−= ) was applied to the update daily Z-R relationship for 

hourly radar rainfall (HRRS) estimation.  

 

Results of flood estimates using the 4 rainfall types show that the accuracy of 

overall hydrograph and peak flow estimated using all radar rainfall data (DRR, HRR, 

and HRRS) are generally higher than that of estimated using the DGR data, 

respectively. The results have therefore confirmed an ability of the weather radar 

rainfall to be used to as the input data for improving the accuracy of runoff estimation 

in the upper Ping river basin, where continuous gage rainfall measurement is 

unavailable and the available daily rain gages are sparsely distributed. Additionally, 

the use of HRR cannot produce better results of runoff hydrograph than the use of 

DRR. On the other hand, the HRRS has already proved its ability to be used to 

improve the accuracy of runoff estimates, especially the overall hydrographs. The 

scaling logic is therefore necessary to be applied to prepare the HRRS for the situation 

like the upper Ping river basin, where daily Z-R relationship is only available. 
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